
Computational Methods

STAT 489-01: Bayesian Methods of Data Analysis ∗

Spring Semester 2017

Contents

1 Importance Sampling 2

2 Markov Chain Monte Carlo 2

2.1 Metropolis and Metropolis-Hastings Algorithms . 3

2.1.1 Metropolis Algorithm 3

2.1.2 Why It Works 4

2.1.3 Metropolis-Hastings Algorithm 5

2.1.4 Dirichlet Example 5

2.2 Gibbs Sampler 12

2.2.1 Dirichlet Example 13

2.3 Using JAGS for MCMC 16

2.4 Example: Hierarchical Normal Model (Gelman
11.6) . 19

3 Hamiltonian Monte Carlo 21

3.1 Maximum Entropy 22

3.2 Maximum Entropy as a Statistical Principle . . . 23

3.3 Hamiltonian Mechanics 24

3.4 Programming HMC with Stan 26

∗Copyright 2017, John T. Whelan, and all that

Tuesday 21 March 2017
– Refer to Chapters 10 and 11 of Gelman or
Chapter 8 of McElreath or Chapter 7 of Kr-
uschke

We’ve seen that random samples from the posterior distribution
p(θ|y, I) is useful for estimating expectation values, marginal
distributions of parameters, etc. So far we’ve always been able
to draw samples directly from the distribution in question, since
it’s been standard and simple enough that standard statistical
software has had it programmed in. In more complicated situ-
ations, such when the distribution is nonstandard or when the
parameter space has many dimensions, this is impossible or im-
practical. There are a number of numerical methods which can
effectively draw samples from the desired distribution in these
cases.

The distribution p(θ|y, I) from which we’re trying to sample
is known as the target distribution. Note that we usually don’t
have to have the functional form of the normalized distribution.
If p(θ|y, I) = Nq(θ|y, I) for some known q(θ|y, I), we usually
don’t need to calculate

N(y, I) =
1∫

q(θ|y, I) dθ
(0.1)

1

which involves a possibly difficult integral over the parameter
space. For instance,

E[h(θ)|y, I] =

∫
h(θ) p(θ|y, I) dθ =

∫
h(θ) q(θ|y, I) dθ∫
q(θ|y, I) dθ

≈ 1

S

S∑
s=1

h(θs)

(0.2)

where {θs} are parameter space points drawn proportional to
q(θ|y, I).

1 Importance Sampling

Before we get into random walk methods, let’s consider another
case where it is impractical to draw directly from the desired
distribution p(θ|y, I), but we have some “similar” distribution
g(θ) from which we can easily draw a sample. In that case, if
{θs} is such a sample, the average of any function k(θ) can be
approximated as

∫
k(θ) g(θ) dθ ≈ 1

S

S∑
s=1

k(θs) (1.1)

If we want to get the expectation value of h(θ) under p(θ|y, I),
we can construct

E[h(θ)|y, I] =

∫
h(θ) p(θ|y, I) dθ =

∫
h(θ) q(θ|y, I) dθ∫
q(θ|y, I) dθ

=

∫
h(θ) q(θ|y,I)

g(θ)
g(θ) dθ∫ q(θ|y,I)

g(θ)
g(θ) dθ

≈
1
S

∑S
s=1 h(θs)w(θs)

1
S

∑S
s=1w(θs)

(1.2)

where

w(θ) =
q(θ|y, I)

g(θ)
(1.3)

is a weighting function that corrects for the fact that the sample
was drawn from g(θ) rather than q(θ|y, I).

This looks very powerful and easy, but it can go very wrong
if there are regions of the parameter space where g(θ) is neg-
ligible but q(θ|y, I) is significant. An extreme version would
be if there are some regions where g(θ) = 0 but q(θ|y, I) 6= 0.
The weighting factor would be infinite at those points, but they
would never be drawn. If g(θ) is finite but small somewhere,
those values would be very rare, but when they occurred, their
huge weights would take over the estimate, making things very
unstable. So in general, it’s bad if the weights become too large
compared to their typical values, which can happen e.g., if the
target distribution q(θ|y, I) has bigger tails than the sampling
distribution g(θ). So this is why we cannot always for example
use the Gaussian approximation centered on the MAP point to
approximate a distribution, even with importance sampling.

2 Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) methods execute a ran-
dom walk through parameter space, and are designed to visit
points in parameter space in proportion to their probabilities
under the target distribution. The “Markov” part means that
the probability of reaching a point θt at step t of the chain de-
pends only the previous point θt−1 and not any earlier points in
the chain.

2

2.1 Metropolis and Metropolis-Hastings Al-
gorithms

2.1.1 Metropolis Algorithm

To carry out an MCMC we need a rule for moving from one point
to another in parameter space. Typically there is a proposal
distribution J(θ′|θ) from which a jump is considered, and then
a rule for deciding whether to jump to that new point. The
Metropolis algorithm requires that the rule be symmetric, so
J(θ′|θ) = J(θ|θ′) but doesn’t otherwise restrict it.1 The rule is
then as follows: draw a point θ∗ from J(θ∗|θt−1) and calculate
the ratio

r =
p(θ∗|y, I)

p(θt−1|y, I)
=

q(θ∗)

q(θt−1)
; (2.1)

If r ≥ 1, make the jump and let θt = θ∗. If r < 1, generate a
Uniform[0, 1] random number u; if u ≤ r, make the jump and
θt = θ∗. If u > r, don’t make the jump and let θt = θt−1. I.e.,
make the jump with probability r.

We’ll see in detail why it works on Thursday, but as a matter
of formalism consider how the rules translate into statements
about the probability distributions for the proposed jump posi-
tion θ∗ and the next value θt in terms of the current value θt−1.
The proposal rule just tells us that

p(θ∗|θt−1,y, I) = J(θ∗|θ) (2.2)

while the acceptance rule tells us that

p(θt|θ∗,θt−1,y, I) =

{
δ(θt − θ∗) if r ≥ 1

rδ(θt − θ∗) + (1− r)δ(θt − θt−1) if r < 1

(2.3)

1J(θ′|θ) should be a probability distribution which we can easily draw
from for any θ with p(θ|y, I) > 0.

where δ(θ − θ′) is the Dirac delta function defined so that∫
δ(θ − θ′) f(θ) dθ = f(θ′) (2.4)

and r is the ratio defined in (2.1). Note that if r < 1,
p(θt|θ∗,θt−1,y, I) is a mixture distribution, which is just a lin-
ear combination of other probability distributions (in this case
degenerate ones). It’s basically just a manifestation of the sum
rule. If I says that θ can be drawn from distributions D1 or D2,
the probability distribution is

p(θ|I) = p(θ|D1, I) Pr(D1|I) + p(θ|D2, I) Pr(D2|I) (2.5)

where p(θ|D1, I) and p(θ|D2, I) are separately normalized prob-
ability distributions, and Pr(D1|I) + Pr(D2|I) = 1.

Returning to the distribution (2.3) we can actually combine
the two cases by writing

p(θt|θ∗,θt−1,y, I) = min(1, r)δ(θt−θ∗)+[1−min(1, r)]δ(θt−θt−1)
(2.6)

The product rule then gives the joint distribution

p(θt,θ∗|θt−1,y, I) = J(θ∗|θt−1)
(

min(1, r)δ(θt − θ∗)

+ [1−min(1, r)]δ(θt − θt−1)

)
(2.7)

We will show that the target distribution is the stable endpoint
of the MCMC by showing that if the marginal sampling distri-
bution for one step is the target distribution, than the marginal
sampling distribution for the next step is as well:

p(θt−1|MCMC) = p(θt−1|y, I) implies p(θt|MCMC) = p(θt|y, I)
(2.8)

3

Thursday 23 March 2017

2.1.2 Why It Works

Now we turn to a demonstration of why the Metropolis algo-
rithm produces, over the long term, samples from the target
distribution. As a result of some mathematical theory that’s
beyond the scope of this course, any reasonable MCMC will
settle down into a unique equilibrium, so all we need is to
demonstrate that the target distribution is an equilibrium state.
What that means is that if we (hypothetically) make a draw
from the target distribution, and then take one MCMC step
from that point and consider where we ended up, the proba-
bility distribution for the new point is also the target distri-
bution. In the notation we’ve been using, this means that if
we assume p(θt−1|MCMC) = p(θt−1|y, I) we can show that
p(θt|MCMC) = p(θt|y, I). We’ll do this by constructing the
joint distribution p(θt,θt−1|MCMC) for the two points. Note
that we’re assuming

∫
p(θt,θt−1|MCMC) = p(θt−1|MCMC) = p(θt−1|y, I) (2.9)

so if the functional form of p(θt,θt−1|MCMC) is symmetric un-
der interchange of the two arguments θt and θt−1, it will be
the case that the two marginal distributions p(θt|MCMC) and
p(θt−1|MCMC) have the same form, and thus we’ll have proved
that p(θt|MCMC) = p(θt|y, I).

To construct the joint distribution p(θt,θt−1|MCMC) we start

with the joint distribution

p(θt,θ∗,θt−1|MCMC) = p(θt−1|y, I)J(θ∗|θt−1)
(

min(1, r)δ(θt−θ∗)

+ max(1− r, 0)δ(θt − θt−1)
)

= δ(θt − θ∗)J(θ∗|θt−1) min(p(θt−1|y, I), p(θ∗|y, I))

+ δ(θt − θt−1)J(θ∗|θt−1) max(p(θt−1|y, I)− p(θ∗|y, I), 0)
(2.10)

Next we marginalize over θ∗; in the first term, the delta function
just sets θ∗ to θt. The second term is more complicated, but
the result of the integral (factoring out the θ∗-independent delta
function) is∫

J(θ∗|θt−1) max(p(θt−1|y, I)− p(θ∗|y, I), 0) dθ∗

=

∫
p(θ∗|y,I)<p(θt−1|y,I)

J(θ∗|θt−1)
[
p(θt−1|y, I)− p(θ∗|y, I)

]
dθ∗

= p(θt−1, reject|y, I) (2.11)

I.e., it’s the probability of drawing θt−1 from the target distri-
bution and then rejecting the next jump. So the result of the
marginalization is

p(θt,θt−1|MCMC) = J(θt|θt−1) min(p(θt−1|y, I), p(θt|y, I))

+ δ(θt − θt−1)p(θt−1, reject|y, I) (2.12)

The first term is symmetric under interchange θt ←→ θt−1 as
long as the proposal distribution J(θt|θt−1) is. The second term
is also symmetric, because the Dirac delta function is even, and
is only non-zero if θt = θt−1. Thus the joint distribution is
symmetric and both marginal distributions are the same, i.e.,
the target distribution.

4

2.1.3 Metropolis-Hastings Algorithm

The Metropolis algorithm can be extended to situations where
the proposal distribution is not symmetric, e.g., distributions
which avoid boundaries of parameter space. The modification
is to the acceptance rule, which now uses the value of the ratio

r′ =
p(θ∗|y, I) J(θt−1|θ∗)
p(θt−1|y, I) J(θ∗|θt−1)

=
q(θ∗) J(θt−1|θ∗)
q(θt−1) J(θ∗|θt−1)

; (2.13)

the rule is as before, i.e., accept the jump with probability
min(1, r′).

2.1.4 Dirichlet Example

As a concrete example, suppose the target distribution is a
Dirichlet distribution with parameters (α1, α2, α3) = (3, 6, 4).
Of course, we can sample from this directly, and plot it on a
ternary plot:

> alpha = c(3,6,4)

> N = 2000

> set.seed(20170321)

> thetasample = rdirichlet(N,alpha)

> library(ggtern)

> myframe = function(mysample) {

+ (data.frame(theta1=mysample[,1],

+ theta2=mysample[,2],

+ theta3=mysample[,3]))

+ }

> tickvals = seq(.2,1,.2)

> addmyopts = function(myplot) {

+ (myplot

+ + geom_point(size=0.01)

+ + tern_limits(breaks=tickvals,labels=tickvals)

+ + xlab(expression(theta[1]))

+ + ylab(expression(theta[2]))

+ + zlab(expression(theta[3]))

+ + theme_light()

+)

+ }

> thetaframe = myframe(rdirichlet(N,alpha))

> addmyopts(ggtern(thetaframe,aes(theta1,theta2,theta3)))

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

0.
2

0.
4

0.
6

0.
8 1

θ2

θ1 θ3

But let’s pretend we can’t just sample directly from the poste-
rior. We’ll define a function that does one step of a Metropolis
MCMC by proposing a new point with independent Gaussian
changes to θ1 and θ2:

J(θ∗|θ) ∝ exp

(
−(θ∗1 − θ1)2

2σ2
− (θ∗2 − θ2)2

2σ2

)
(2.14)

σ defaults to 0.2 but we leave it as an argument so we can
change it later. Note that the proposed point may be out of

5

bounds (negative θ∗1 or θ∗2, or θ∗1 + θ∗2 > 1), but the pdf should
be zero outside of the allowed space.

> nextpt = function (mytheta,sigma=0.2) {

+ theta1new = rnorm(1,mytheta[1],sigma)

+ theta2new = rnorm(1,mytheta[2],sigma)

+ theta3new = 1 - theta1new - theta2new

+ thetanew = c(theta1new,theta2new,theta3new)

+ r = (ddirichlet(thetanew,alpha)

+ / ddirichlet(mytheta,alpha))

+ if (runif(1) > r) {

+ thetanew = mytheta

+ }

+ return(thetanew)

+ }

We’ll start in the middle of the triangle, and update one step at
a time:

> theta = c(1/3,1/3,1/3)

> theta = nextpt(theta); print(theta)

[1] 0.2233426 0.4357120 0.3409454

We’ve accepted the first jump.

> theta = nextpt(theta); print(theta)

[1] 0.2233426 0.4357120 0.3409454

> theta = nextpt(theta); print(theta)

[1] 0.2233426 0.4357120 0.3409454

The last two jumps have been rejected.

> theta = nextpt(theta); print(theta)

Warning message:

In log(x) : NaNs produced

[1] 0.2233426 0.4357120 0.3409454

We tried to jump out of bounds, so it was rejected.

> theta = nextpt(theta); print(theta)

[1] 0.3003148 0.4433981 0.2562871

We’ve accepted a jump.

> theta = nextpt(theta); print(theta)

[1] 0.3003148 0.4433981 0.2562871

We’ve rejected a jump and stayed at the same point, etc.
Now let’s take a chain of 4000 steps:

> m=4000

> nanchain = matrix(rep(0/0,3*m),ncol=3,byrow=TRUE)

> chain1 = nanchain

> chain1[1,] = c(1/3,1/3,1/3)

> for (i in 2:m) {

+ chain1[i,] = nextpt(chain1[i-1,])

+ }

There were 50 or more warnings (use warnings() to see

the first 50)

The warnings are for more illegal jumps, which we know about.
Now we’ll plot the chains on a ternary plot. But since the
MCMC method allows us to remain at the same point for several
steps, we should “jitter” the points slightly so they’re plotted
next to each other rather than right on top of each other:

> myjitter = matrix(runif(3*m,-0.01,0.01),

+ ncol=3,byrow=TRUE)

> chain1frame = myframe(chain1+myjitter)

Let’s plot the first 20 steps of the chain

> addmyopts(ggtern(chain1frame[1:20,],

+ aes(theta1,theta2,theta3))

+ + geom_path(alpha=0.5,col=’blue’))

6

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

0.
2

0.
4

0.
6

0.
8 1

θ2

θ1 θ3

and now the first 200:

> addmyopts(ggtern(chain1frame[1:200,],

+ aes(theta1,theta2,theta3))

+ + geom_path(alpha=0.5,col=’blue’))

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

0.
2

0.
4

0.
6

0.
8 1

θ2

θ1 θ3

The first part of the chain is of course influenced by where we
started it, but it gradually becomes less important, and the chain
looks more like a set of correlated draws from the target distri-
bution. It’s common practice to discard the first part of the
chain, known as “burn-in” (Gelman calls this “warm-up”). Gel-
man recommends the first half of the chain, which is probably
overkill, but let’s do that, and plot the result:

> addmyopts(ggtern(chain1frame[(m/2+1):m,],

+ aes(theta1,theta2,theta3)))

7

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

0.
2

0.
4

0.
6

0.
8 1

θ2

θ1 θ3

We can see tat this sort of follows the Dirichlet distribution, but
it’s a bit “clumpier”. The correlations show that this does not
look like 2000 independent draws from the distribution. Gelman
has some more precise effective-sample-size computations, but
they’re non-trivial, since they involve estimating the autocorre-
lation function from the data.

We can start the chains in different parts of the parameter
space and see that it makes a difference at the start, but not in
the long run:

> chain2 = nanchain

> chain2[1,] = c(0.05,0.05,0.9)

> for (i in 2:m) {

+ chain2[i,] = nextpt(chain2[i-1,])

+ }

There were 50 or more warnings (use warnings() to see

the first 50)

> chain2frame = myframe(chain2+myjitter)

> addmyopts(ggtern(chain2frame[1:200,],

+ aes(theta1,theta2,theta3))

+ + geom_path(alpha=0.5,col=’green’))

0.2

0.4

0.6

0.8

1
0.2

0.4

0.6

0.8

1

0.
2

0.
4

0.
6

0.
8 1

θ2

θ1 θ3

> addmyopts(ggtern(chain2frame[(m/2+1):m,],

+ aes(theta1,theta2,theta3)))

8

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

0.
2

0.
4

0.
6

0.
8 1

θ2

θ1 θ3

> chain3 = nanchain

> chain3[1,] = c(0.05,0.05,0.9)

> for (i in 2:m) {

+ chain3[i,] = nextpt(chain3[i-1,])

+ }

There were 50 or more warnings (use warnings() to see

the first 50)

> chain3frame = myframe(chain3+myjitter)

> addmyopts(ggtern(chain3frame[1:200,],

+ aes(theta1,theta2,theta3))

+ + geom_path(alpha=0.5,col=’red’))

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

0.
2

0.
4

0.
6

0.
8 1

θ2

θ1 θ3

> addmyopts(ggtern(chain3frame[(m/2+1):m,],

+ aes(theta1,theta2,theta3)))

9

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

0.
2

0.
4

0.
6

0.
8 1

θ2

θ1 θ3

To give an example of the sort of things we can calculate with
these MCMC results, define a “cumulative mean” function to
estimate E(θ1|y, I) from the sample, and compare how it looks
for different chains:

> cummean = function(x) {return(cumsum(x)/1:length(x))}

> plot(cummean(thetasample[,1]),type=’l’,ylim=c(0,0.5))

> lines(cummean(chain1frame[(m/2+1):m,1]),col=’blue’)

> lines(cummean(chain2frame[(m/2+1):m,1]),col=’green’)

> lines(cummean(chain3frame[(m/2+1):m,1]),col=’red’)

0 500 1000 1500 2000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Index

cu
m

m
ea

n(
th

et
as

am
pl

e[
, 1

])

We can see that the MCMC samples take longer to provide an
accurate expectation value than the independent sample would.

One of the choices we have to make in doing a Metropolis
(or Metropolis-Hastings) MCMC is the proposal distribution.
It ought to involve jumps which are comparable in size to the
features of the distribution. If the jumps are too small, it will
take the chains a long time to explore the parameter space, and
if they are too large, most of them will be rejected, also leading
to slow movement of the chains. For comparison to the results
above, suppose we’d used σ = 0.04 instead of σ = 0.2:

> chain04 = nanchain

> chain04[1,] = c(0.05,0.05,0.9)

> for (i in 2:m) {

+ chain04[i,] = nextpt(chain04[i-1,],0.04)

+ }

There were 44 warnings (use warnings() to see them)

> chain04frame = myframe(chain04+myjitter)

> addmyopts(ggtern(chain04frame[1:200,],

10

+ aes(theta1,theta2,theta3))

+ + geom_path(alpha=0.5,col=’green’))

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

0.
2

0.
4

0.
6

0.
8 1

θ2

θ1 θ3

> addmyopts(ggtern(chain04frame[(m/2+1):m,],

+ aes(theta1,theta2,theta3)))

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

0.
2

0.
4

0.
6

0.
8 1

θ2

θ1 θ3

Or if we’d used σ = 1 instead of σ = 0.2:

> chain10 = nanchain

> chain10[1,] = c(0.05,0.05,0.9)

> for (i in 2:m) {

+ chain10[i,] = nextpt(chain10[i-1,],1)

+ }

There were 50 or more warnings (use warnings() to see

the first 50)

> chain10frame = myframe(chain10+myjitter)

> addmyopts(ggtern(chain10frame[1:200,],

+ aes(theta1,theta2,theta3))

+ + geom_path(alpha=0.5,col=’green’))

11

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

0.
2

0.
4

0.
6

0.
8 1

θ2

θ1 θ3

Here we see the impact of all the rejected jumps is particularly
bad, and the first 200 points represent only 7 unique points in
parameter space.

> addmyopts(ggtern(chain10frame[(m/2+1):m,],

+ aes(theta1,theta2,theta3)))

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

0.
2

0.
4

0.
6

0.
8 1

θ2

θ1 θ3

Tuesday 28 March 2017

2.2 Gibbs Sampler

Recall the Metropolis-Hastings algorithm, which produces a
Markov Chain resulting in samples from a posterior p(θ|y, I) by
proposing jumps drawn from a proposal distribution J(θ∗|θ). If
we’ve reached a point θt−1 on the chain, we propose a jump to a
new point θ∗ drawn from J(θ∗|θt−1) and either accept (θt = θ∗)
or reject (θt = θt−1) according to the value of the ratio

r =
p(θ∗|y, I) J(θt−1|θ∗)
p(θt−1|y, I) J(θ∗|θt−1)

(2.15)

If r ≥ 1, we automatically accept the jump; otherwise we accept
it with probability r.

The Gibbs sampler is a special example of Metropolis-
Hastings, where the proposal distribution is constructed

12

from the target distribution itself. For each parameter
θj we construct a vector of the other parameters, θ−j =
{θ1, . . . , θj−1, θj+1, . . . θm} and consider the conditional distribu-
tion

p(θj|θ−j,y, I) =
p(θ|y, I)

p(θ−j|y, I)
. (2.16)

If the conditional distribution for each individual parameter is
simple, we can use that as our proposal distribution. In partic-
ular, at each step, we choose2 one parameter θj to update and
leave the others constant, so that

J(θ∗|θt−1) = p(θ∗j |θt−1−j ,y, I) δ(θ∗−j − θt−1−j) (2.17)

The Metropolis-Hastings ratio is

r =
p(θ∗|y, I) J(θt−1|θ∗)
p(θt−1|y, I) J(θ∗|θt−1)

=
p(θ∗|y, I) p(θt−1j |θ

∗
−j,y, I) δ(θ∗−j − θt−1−j)

p(θt−1|y, I) p(θ∗j |θ
t−1
−j ,y, I) δ(θ∗−j − θt−1−j)

= ������
p(θ∗|y, I)�������

p(θt−1|y, I) p(θ∗−j|y, I) δ(θ∗−j − θt−1−j)

�������
p(θt−1|y, I) p(θt−1−j |y, I)������

p(θ∗|y, I) δ(θ∗−j − θt−1−j)
= 1

(2.18)

so the jump is always accepted. Note that if we can’t actually
draw from p(θ∗j |θt−1−j ,y, I) exactly, we may be able to use an
approximation to the marginal distribution, and then calculate
the M-H ratio rather than automatically accepting every jump.

2A common practice is to group together m steps at a time, and loop
through the m parameters in some random order, updating each one.

2.2.1 Dirichlet Example

Let’s return to our example of sampling from a Dirichlet poste-
rior:

p(θ1, θ2|y, I) ∝ θα1
1 θ

α2
2 (1− θ1 − θ2)α3 0 < θ1, θ2; θ1 + θ2 < 1

(2.19)
If we want to use the Gibbs sampler, we need the conditional
distributions p(θ1|θ2,y, I) and p(θ2|θ1,y, I). The marginal dis-
tributions of a Dirichlet distribution are beta distributions:

p(θ1|y, I) ∝ θα1−1
1 (1− θ1)α2+α3−1 0 < θ1 < 1 (2.20a)

p(θ2|y, I) ∝ θα2−1
2 (1− θ2)α1+α3−1 0 < θ2 < 1 (2.20b)

so we get the conditional distribution

p(θ1|θ2,y, I) =
p(θ1, θ2|y, I)

p(θ2|y, I)
∝ θα1−1

1 ���θα2−1
2 (1− θ1 − θ2)α3−1

���θα2−1
2 (1− θ2)α1+α3−1

= (1− θ2)
(

θ1
1− θ2

)α1−1(
1− θ1

1− θ2

)α3−1

∝
(

θ1
1− θ2

)α1−1(
1− θ1

1− θ2

)α3−1

0 < θ1 < 1− θ2

(2.21)

(since the extra factor of 1−θ2 is a ”constant” when considering
a probability density for θ1) and likewise

p(θ2|θ1,y, I) ∝
(

θ2
1− θ1

)α2−1(
1− θ2

1− θ1

)α3−1

0 < θ2 < 1−θ1
(2.22)

We can draw easily from the distributions (2.21) and (2.22). For
instance, (2.21) tells us that

θ1
1− θ2

∣∣∣∣ θ2 ∼ Beta(α1, α3) (2.23)

13

This means, to update θ1, we draw a Beta(α1, α3) random vari-
able and multiply it by 1− θ2. We can code this up in R (we’re
also keeping track of θ3, but we just set it to 1− θ1− θ2 at each
Gibbs step:

> alpha = c(3,6,4)

> nextpt1_gibbs = function(mytheta) {

+ theta1new = (1-mytheta[2])*rbeta(1,alpha[1],alpha[3])

+ mytheta[1] = theta1new

+ mytheta[3] = 1 - sum(mytheta[-3])

+ return(mytheta)

+ }

> nextpt2_gibbs = function(mytheta) {

+ theta2new = (1-mytheta[1])*rbeta(1,alpha[2],alpha[3])

+ mytheta[2] = theta2new

+ mytheta[3] = 1 - sum(mytheta[-3])

+ return(mytheta)

+ }

> set.seed(20170328)

> theta = c(1/3,1/3,1/3)

> theta = nextpt1_gibbs(theta); print(theta)

[1] 0.2547338 0.3333333 0.4119328

> theta = nextpt2_gibbs(theta); print(theta)

[1] 0.2547338 0.3682150 0.3770512

> theta = nextpt1_gibbs(theta); print(theta)

[1] 0.3640820 0.3682150 0.2677031

> theta = nextpt2_gibbs(theta); print(theta)

[1] 0.3640820 0.4362305 0.1996875

Let’s start off a chain, For simplicity, we just alternate the steps
in θ1 and θ2:

> m = 4000

> nanchain = matrix(rep(0/0,3*(m+1)),ncol=3,byrow=TRUE)

> chain1 = nanchain

> chain1[1,] = c(1/3,1/3,1/3)

> for (i in 2*(1:(m/2))) {

+ chain1[i,] = nextpt1_gibbs(chain1[i-1,])

+ chain1[i+1,] = nextpt2_gibbs(chain1[i,])

+ }

> myframe = function(mysample) {

+ (data.frame(theta1=mysample[,1],

+ theta2=mysample[,2],

+ theta3=mysample[,3]))

+ }

> chain1frame = myframe(chain1)

> library(ggtern)

> tickvals = seq(.2,1,.2)

> addmyopts = function(myplot) {

+ (myplot

+ + geom_point(size=0.01)

+ + tern_limits(breaks=tickvals,labels=tickvals)

+ + xlab(expression(theta[1]))

+ + ylab(expression(theta[2]))

+ + zlab(expression(theta[3]))

+ + theme_light()

+)

+ }

> addmyopts(ggtern(chain1frame[1:20,],

+ aes(theta1,theta2,theta3))

+ + geom_path(alpha=0.5,col=’blue’))

14

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

0.
2

0.
4

0.
6

0.
8 1

θ2

θ1 θ3

We can see that the Gibbs-sampler path looks rather different,
being made up of steps parallel to the axes.

> addmyopts(ggtern(chain1frame[1:200,],

+ aes(theta1,theta2,theta3))

+ + geom_path(alpha=0.5,col=’blue’))

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

0.
2

0.
4

0.
6

0.
8 1

θ2

θ1 θ3

Within 200 steps, we’ve already explored the parameter space
pretty well

> addmyopts(ggtern(chain1frame[(m/2+1):m,],

+ aes(theta1,theta2,theta3)))

This looks like a pretty good sample. Note that no jitter is
necessary now because no jumps are rejected.

15

0.2

0.4

0.6

0.8

1

0.2

0.4

0.6

0.8

1

0.
2

0.
4

0.
6

0.
8 1

θ2

θ1 θ3

We can see how the means of θ1, θ2 and θ3 estimated from these
chains compare to the exact values:

> mean(chain1frame[(m/2+1):m,1])

[1] 0.2370543

> alpha[1]/sum(alpha)

[1] 0.2307692

> mean(chain1frame[(m/2+1):m,2])

[1] 0.4571373

> alpha[2]/sum(alpha)

[1] 0.4615385

> mean(chain1frame[(m/2+1):m,3])

[1] 0.3058084

> alpha[3]/sum(alpha)

[1] 0.3076923

We can plot the cumulative average, and see that a small sample
can be more accurate for the Gibbs sampler than the MCMC
we considered before:

> cummean = function(x) {return(cumsum(x)/1:length(x))}

> plot(cummean(chain1frame[,1]),type=’l’,col=’blue’,

+ ylim=c(0,0.5))

0 500 1000 1500 2000

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Index

cu
m

m
ea

n(
ch

ai
n1

fr
am

e[
(m

/2
 +

 1
):

m
, 1

])

Thursday 30 March 2017 – Refer to Chapter
8 of Kruschke

2.3 Using JAGS for MCMC

Rather than coding up your own Gibbs sampler, you can also
use libraries available for that purpose. A popular one is JAGS3,
which stands for Just Another Gibbs Sampler. It is a descen-
dant of the BUGS (Bayesian Using Gibbs Sampler) family of
programs. JAGS is actually its own language, but there exists
an R interface known as rjags, which we’ll use. To use JAGS,
you don’t typically specify the posterior directly, but instead
specify the whole statistical model, in the form of the prior and

3http://mcmc-jags.sourceforge.net/

16

likelihood, and provide it with some data. The model is speci-
fied in a separate file written in JAGS’s own language. It differs
from R in a few potentially annoying ways:

• The names of some standard distributions are different, as
is the order of their parameters; e.g., dbin(p,n) rather than
dbinom(n,p).

• Assignment must be done with the <- operator rather than
=.

• The commands are not really executed in the order you
write them (except inside a loop), and for example, you
can’t change the value of a variable using <-, once you’ve
already set it.

• Not all of the R data structures are available.

It turns out that the Dirichlet distribution doesn’t work so
smoothly in JAGS, so for a minimal working example, we’ll go
back to our old standby of Bernoulli trials with a Beta prior.
We have to write our model in a file; in practice we’d do that in
a text editor, but for demonstration purposes let’s write it from
within R:

> library(rjags)

Loading required package: coda

Linked to JAGS 3.4.0

Loaded modules: basemod,bugs

> modelString = "

+ model {

+ y ~ dbin(theta,n)

+ theta ~ dbeta(1,1)

+ n <- 4

+ }

+ "

> filename = ’model.20170330.txt’

> writeLines(modelString, con=filename)

The ~ operator defines the distribution from which a variable is
sampled. We’ve hard-coded n = 4 into the model to show that
such things can be done, but we could also supply n with the
data. We use rjags to initialize the model:

> set.seed(20170330)

> jagsModel = jags.model(file=filename, data=list(y=3),

+ n.chains=3)

Compiling model graph

Resolving undeclared variables

Allocating nodes

Graph Size: 4

Initializing model

> jagsModel

JAGS model:

model {

y ~ dbin(theta,n)

theta ~ dbeta(1,1)

n <- 4

}

Fully observed variables:

n y

We’ve specified the number of chains to use; if you leave that
out it uses one chain by default. There’s another optional option
inits to tell your chains where to start; if you leave it out as
we did, JAGS picks the points for you.

The first thing we need to do is run the model for a while and
discard the burn-in:

17

> update(jagsModel, n.iter=500)

|**| 100%

Now we’re ready to collect the samples. We could used
jags.samples, but there’s a convenience package called coda

and we’ll use the wrapper from that:

> codaSamples = coda.samples(jagsModel,

+ variable.names=c(’theta’),n.iter=4000)

|**| 100%

coda has some diagnostic plots which we can make:

> plot(codaSamples)

1000 2000 3000 4000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Iterations

Trace of theta

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

Density of theta

N = 4000 Bandwidth = 0.02896

There are more extensive plots available from the software pack-
age associated with Kruschke, which we can get from https:

//sites.google.com/site/doingbayesiandataanalysis/

software-installation/

> source(’DBDA2Eprograms/DBDA2E-utilities.R’)

> diagMCMC(codaObject = codaSamples, parName = ’theta’)

> dev.copy2pdf(file=’notes_comp_jags_DBDA2E.pdf’,

+ height=4, width=6)

1000 2000 3000 4000

0.
0

0.
4

0.
8

Iterations

P
ar

am
. V

al
ue

1000 2000 3000 4000

1.
00

1.
03

last iteration in chain

sh
rin

k
fa

ct
or

median
97.5%

●

● ● ●
● ●

● ● ● ● ●
● ● ●

●
● ● ● ● ● ●

● ● ● ● ●
●

● ● ● ●
●

● ● ● ● ●

0 5 10 15 20 25 30 35

0.
0

0.
4

0.
8

Lag

A
ut

oc
or

re
la

tio
n

●

●
● ●

● ● ● ● ● ● ● ●
●

● ●
●

● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ●

● ● ●

●

● ●
● ●

●
● ● ● ● ●

● ●

ESS = 11819.8

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

1.
0

2.
0

Param. Value

D
en

si
ty

|| | |||95% HDI

MCSE =
 0.00164

thetatheta

Note that some of the diagnostics are trivial here. Since there’s
only one parameter, we’re sampling from the posterior itself, and
the samples are actually uncorrelated. DBDA2E also has a nice
convenience function for plotting the posterior of a variable.

> plotPost(codaSamples[,’theta’],main="theta",

+ xlab = bquote(theta))

ESS mean median mode

theta 12307.27 0.6673316 0.6887558 0.7543944

hdiMass hdiLow hdiHigh compVal pGtCompVal

theta 0.95 0.3298472 0.9759335 NA NA

ROPElow ROPEhigh pLtROPE pInROPE pGtROPE

theta NA NA NA NA NA

18

https://sites.google.com/site/doingbayesiandataanalysis/software-installation/
https://sites.google.com/site/doingbayesiandataanalysis/software-installation/
https://sites.google.com/site/doingbayesiandataanalysis/software-installation/
https://sites.google.com/site/doingbayesiandataanalysis/software-installation/
https://sites.google.com/site/doingbayesiandataanalysis/software-installation/
https://sites.google.com/site/doingbayesiandataanalysis/software-installation/

theta

θ
0.0 0.2 0.4 0.6 0.8 1.0

mode = 0.754

95% HDI
0.33 0.976

If you want, you can also extract the chains themselves and
calculate the usual averages from them:

> mean(codaSamples[[1]][,’theta’])

[1] 0.6713674

> mean(codaSamples[[2]][,’theta’])

[1] 0.6618588

> mean(codaSamples[[3]][,’theta’])

[1] 0.6687686

2.4 Example: Hierarchical Normal Model
(Gelman 11.6)

Consider the model of Section 11.6 in Gelman. In this model
the data are {yij} with j = 1, . . . , J and i = 1, . . . , nj, which are
assumed to be independently drawn from normal distributions
N(θj, σ

2). I.e., there are J different samples of possibly differ-
ent sizes {nj}, drawn from normal distributions with different

means {θj} and the same variance σ2. The prior on the variance
is non-informative (uniform in ln σ), and the prior on the means
is iid normal N(µ, τ 2). In the past, we’d have specified values for
µ and τ as part of the model, but this is a hierarchical model in
which µ and τ are hyperparameters with their own prior distri-
bution, which we take to be uniform in µ and τ > 0. (Note that
this is a noninformative prior on µ but not on τ , for technical
reasons.) Explicitly, the probability distributions describing the
model are

p(y|θ, σ, µ, τ, I) = p(y|θ, σ, I)

∝ σ−
∑J
j=1 nj exp

(
1

2σ2

J∑
j=1

nj∑
i=1

(yij − θj)2
)

(2.24a)

p(θ|µ, τ, I) ∝ τ−J exp

(
1

2τ 2

J∑
j=1

(θj − µ)2

)
(2.24b)

p(σ|µ, τ, I) = p(σ|I) ∝ σ−1 (2.24c)

p(µ|I) = const (2.24d)

p(τ |I) = const (2.24e)

and we’re trying to simulate draws from the joint posterior

p(θ, σ, µ, τ |y, I) ∝ p(y|θ, σ, I) p(θ|µ, τ, I) p(σ|I) p(µ|I) p(τ |I)
(2.25)

We can represent the data (given in Table 11.2 of Gelman) in R
as a list of lists:

> y=list(list(62,60,63,59),

+ list(63,67,71,64,65,66),

+ list(68,66,71,67,68,68),

+ list(56,62,60,61,63,64,63,59))

> J = length(y)

19

> n = rep(0/0,J)

> for (j in 1:J) {n[j] = length(y[[j]])}

Note that the value yij is stored as y[[j]][[i]] because of the
nature of the data structure. In any event, this format doesn’t
work in JAGS, so we have to “pack” the data into a flat vector
(note that the most convenient way to do this stores the indices
backwards within each sub-vector):

> ypacked = rep(0/0,sum(n))

> for (j in 1:J) {

+ for(i in 1:n[j]) {

+ k = sum(n[1:j]) - (i-1)

+ print(k)

+ ypacked[k] = y[[j]][[i]]

+ }

+ }

[1] 4

[1] 3

[1] 2

[1] 1

[1] 10

[1] 9

[1] 8

[1] 7

[1] 6

[1] 5

[1] 16

[1] 15

[1] 14

[1] 13

[1] 12

[1] 11

[1] 24

[1] 23

[1] 22

[1] 21

[1] 20

[1] 19

[1] 18

[1] 17

We can then represent the model in jags in a file which can be
found at
http://ccrg.rit.edu/~whelan/courses/2017_1sp_STAT_489/data/ps08_prob2_model.txt

and looks like this:

model {

tau ~ dunif(1e-8,1e8)

logsigma ~ dunif(-1e8,1e8)

mu ~ dunif(-1e8,1e8)

for (j in 1:J) {

theta[j] ~ dnorm(mu,tau^(-2))

for (i in 1:n[j]) {

y[sum(n[1:j]) - (i-1)] ~ dnorm(theta[j],exp(-2*logsigma))

}

}

}

We can initialize the model with the command

> jagsModel = jags.model(file=’ps08_prob2_model.txt’,

+ data=list(y=ypacked,n=n,J=J),n.chains=10)

Compiling model graph

Resolving undeclared variables

Allocating nodes

Graph Size: 47

Initializing model

20

http://ccrg.rit.edu/~whelan/courses/2017_1sp_STAT_489/data/ps08_prob2_model.txt
http://ccrg.rit.edu/~whelan/courses/2017_1sp_STAT_489/data/ps08_prob2_model.txt

|++| 100%

You will explore this model further in problem set 8.

Tuesday 4 April 2017 – refer to Chapter 5 of
Sivia or or Chapter 9 of McElreath

3 Hamiltonian Monte Carlo

When we use sampling as a computational method, we’re in-
verting the correspondence associated with the frequentist in-
terpretation of probability. Long-term frequencies for repeated
experiments are approximated by the appropriate probability
distribution. When we sample, we’re simulating repeated ex-
periments and using the frequencies of observations to estimate
the underlying probabilities, even if the probability distribution
doesn’t describe real-world repeatable experiments. The Hamil-
tonian Monte Carlo (HMC) method is based on another such
inversion. In statistical physics, the behavior of a large number
of particles has properties which can be deduced from a proba-
bility distribution. HMC simulates the motion of a large number
of particles, and uses them to estimate probabilities associated
with an associated distribution.

The basic idea is this: suppose you have a bunch of particles,
each of which has a position vector ~x and a momentum vector
~p = m~v = md~x

dt
; mostly they move under the influence of some

force which gives each one a potential energy V (~x) (e.g., if the
box is in a uniform gravitational field with an acceleration of
g, the potential energy is mgh(~x) where h(~x) is the height cor-
responding to position ~x), but occasionally they bounce off of
each other (or the walls of a box) in a way that leaves the to-
tal energy of the particles unchanged. Each particle will have a

kinetic energy

1

2

3∑
j=1

mv2j =
1

2
m~v · ~v =

~p · ~p
2m

(3.1)

and a combined potential and kinetic energy

E(~x, ~p) =
~p · ~p
2m

+ V (~x) (3.2)

if the particles are allowed to fly around and bounce off of each
other in this energy-conserving way, they will settle into an equi-
librium configuration, where the number of particles in a small
volume (d3x) centered on a point ~x with momenta in a small
volume (d3p) centered on ~p will be

N(~x, ~p) ∝ e−βE(~x,~p) d3x d3p (3.3)

where β is a constant which turns out to be β = 1
kBT

, where
T is the temperature of the gas, and kB is a physical constant
(Boltzmann’s constant4) which is associated with the definition
of the temperature scale. This distribution function

f(~x, ~p) =
N(~x, ~p)

d3x d3pN
∝ e−

β
2m

∑3
j=1 p

2
je−βV (~x) (3.4)

looks like a joint distribution with a Gaussian distribution for
the three components of ~p and a distribution proportional to
e−βV (~x) for the three components of ~x. The Hamiltonian Monte
Carlo method makes an analogy where the position vector ~x is

4This is as good a time as any to break out the following quote from
Goodstein’s States of Matter (Prentice-Hall, 1975): “Ludwig Boltzmann,
who spent much of his life studying statistical mechanics, died in 1906, by
his own hand. Paul Ehrenfest, carrying on the work, died similarly in 1933.
Now it is our turn to study statistical mechanics. Perhaps it will be wise
to approach the subject cautiously.”

21

replaced by the parameter space vector θ and the potential en-
ergy V (~x) is replaced by −β−1 ln p(θ|y, I) constructed from the
target distribution p(θ|y, I), where β is chosen for convenience.
We also add to the model a new vector of parameters φ, one cor-
responding to each of the “real” parameters in θ. This vector φ
of “momenta” is the replacement for the momentum vector ~p in
the analogy, and its target distribution is taken to be Gaussian.

Before we get into the specifics of the HMC method, it’s useful
to consider why the equilibrium state of an interacting set of
particles has a distribution that goes like e−βE, because it can
be seen as an application of maximum entropy, a method often
used to construct distributions for use in Bayesian analysis.

3.1 Maximum Entropy

Suppose that you have N “particles”, each of which can be put
into one of I “states”. If the ith state has Ni particles, the total
numer of ways to pick N1 particles for the first state, N2 for the
second, etc, is

Ω =
N !

N1!N2! · · ·NI !
(3.5)

If the particles can each individually wander around from state
to state, the probability of finding a particular configuration
{Ni} is proportional to the multiplicity Ω associated with that
configuration. In thermodynamics, the typical value of N is
around 1023, so it’s ridiculously unlikely that the system won’t
end up in a configuration very “close” to the one which maxi-
mizes Ω. Because Ω is such a large number, it’s conventional to
take the logarithm of it to define the entropy

S = kB ln Ω = kB

(
lnN !−

I∑
i=1

lnNi!

)
(3.6)

where kB is Boltzmann’s constant again. If we use Stirling’s
formula lnN ! ≈ N lnN −N we can write

ln Ω ≈ N lnN−��N−
I∑
i=1

Ni lnNi+

�
�
�
�I∑

i=1

Ni = −
I∑
i=1

Ni ln
Ni

N
(3.7)

If we write pi = Ni
N

as the fraction of particles in state i (which
is also the probability for any randomly chosen particle to be
found in state i), the overwhelmingly most likely configuration
will be the one which maximizes

S

NkB
= −

I∑
i=1

pi ln pi (3.8)

We can learn interesting things by maximizing this entropy.
First, suppose there are no constraints (no conservation laws)
and every configuration of the system is accessible. Then we just
need to maximize the entropy. Upon reflection, this is not totally
unconstrained, since we must have

∑I
i=1 pi = 1 (or equivalently∑I

i=1Ni = N). To do the constrained maximization, we add a
Lagrange multiplier α and maximize

L = −
I∑
i=1

pi ln pi − α

(
I∑
i=1

pi − 1

)
(3.9)

by solving the equations

0 =
∂L

∂pi
= − ln pi −

pi
pi
− α (3.10a)

0 =
∂L

∂α
=

I∑
i=1

pi − 1 (3.10b)

The first equation (actually I equations) can be solved for

pi = e−1−α = const (3.11)

22

and the second equation tells us to choose the constant α so that∑I
i=1 pi = 1, i.e., pi = 1

I
.

Now consider the original problem: each state has an “en-
ergy” Ei, and the interactions are such that the only configu-
rations which are accessible are those with

∑I
i=1Ei = E. To

maximize the entropy subject to this additional constraint, we
add in another Lagrange multiplier β and maximize

L = −
I∑
i=1

pi ln pi−α

(
I∑
i=1

pi − 1

)
−β

(
I∑
i=1

piEi − E

)
(3.12)

which means solving the equations

0 =
∂L

∂pi
= − ln pi −

pi
pi
− α− βEi (3.13a)

0 =
∂L

∂α
=

I∑
i=1

pi − 1 (3.13b)

0 =
∂L

∂β
=

I∑
i=1

piEi − E (3.13c)

The first equation tells us

pi = e−1−α−βEi ∝ e−βEi (3.14)

where the last two equations instruct us to choose α and β ap-
propriately so that

∑I
i=1 pi = 1 and

∑I
i=1 piEi = E. (Note that

this only works if Ei is bounded from below, so that there’s a
maximum value of e−βEi .)

3.2 Maximum Entropy as a Statistical Prin-
ciple

We’ve now demonstrated the result we asserted from statisti-
cal physics, that a system allowed to interact while conserving

energy will end up in a distribution where the density of par-
ticles in phase space is proportional to e−βE(~x,~p). The principle
of maximum entropy is also useful as an extension to Bayesian
analysis, to construct prior distributions and, for that matter,
sampling distributions which make minimal assumptions. For
example, we could consider a discrete distribution p(x|I) for a
data vector x in which each xj, j = 1, . . . , n, with the constraint

E

(
n∑
j=1

xj

∣∣∣∣∣n, I
)

=
∑
x

p(x|n, I)
n∑
j=1

xj

=
1∑

x1=0

· · ·
1∑

xn=0

p(x|n, I)
n∑
j=1

xj = µ

(3.15)

for some specified µ ∈ [0, n]. You can show that the distribution
which maximizes

−
∑
x

p(x|n, I) ln p(x|n, I) (3.16)

subject to this constraint (and normalization) is

p(x|n, I) =
(µ
n

)∑n
j=1 xj

(
1− µ

n

)n−∑n
j=1 xj

(3.17)

One could also consider instead the probability distribution
for y =

∑n
j=1 xj, but we’ll quickly see that the distribution

which maximizes −
∑n

y=0 p(y|n, I) ln p(y|n, I) is not the same
as that which maximizes the previously considered entropy
−
∑

x p(x|n, I) ln p(x|n, I). It’s evident that

p(y|n, I) =
∑
x∑
xi=y

p(x|n, I) (3.18)

23

and since the maximum-entropy p(x|n, I) depends only on y =∑n
j=1 xj,

p(x|n, I) =
p(y|n, I)

m(y|n, I)
(3.19)

where

m(y|n, I) =

(
n

y

)
=

n!

y!(n− y)!
(3.20)

is the number of distinct x vectors corresponding to a given y.
This can be thought of as a multiplicity of states, and it’s also
known as the measure associated with the discrete space of y
values. The entropy can then be written as

−
∑
x

p(x|n, I) ln p(x|n, I) = −
n∑
y=0

∑
x∑
xi=y

p(y|n, I)

m(y|n, I)
ln
p(y|n, I)

m(y|n, I)

= −
n∑
y=0

m(y|n, I)
p(y|n, I)

m(y|n, I)
ln
p(y|n, I)

m(y|n, I)

= −
n∑
y=0

p(y|n, I) ln
p(y|n, I)

m(y|n, I)
(3.21)

and minimizing this subject to
∑n

y=0 p(y|n, I) = 1 and∑n
y=0 p(y|n, I)y = µ gives a binomial distribution with parame-

ters n and µ/n, consistent with the previous result.

So the general form of the entropy for a discrete distribution
is

−
∑
x

p(x|I) ln
p(x|I)

m(x|I)
(3.22)

The nice thing is that we only need to know the measure m(x|I)

up to a constant since

−
∑
x

p(x|I) ln
p(x|I)

cm(x|I)
= −

∑
x

p(x|I) ln
p(x|I)

m(x|I)

+
∑
x

p(x|I) ln c

= −
∑
x

p(x|I) ln
p(x|I)

m(x|I)
+ ln c (3.23)

and the maximum entropy calculation is unaffected by adding a
constant to the entropy.

The nice thing about the form (3.22) is that it extends natu-
rally to the situation where x is continuous, as

−
∫
p(x|I) ln

p(x|I)

m(x|I)
dx (3.24)

where the measure m(x|I) is a density in x and therefore trans-
forms like p(x|I) under changes of variables:

m(y|I) dy = m(x|I) dx (3.25)

so

m(y|I) = m(x|I)

∣∣∣∣det

{
∂yi
∂xj

}∣∣∣∣−1 (3.26)

You can derive a lot of nice results, e.g., if m(x|I) is constant
and we impose the constrants E(x|I) = µ and Var(x|I) = σ2,
the maximum entropy distribution is N(µ, σ2).

Thursday 6 April 2017 – refer to Chapter 12
of Gelman

3.3 Hamiltonian Mechanics

Recall the observation from last class that a group of particles
moving in a potential V (x) and interacting in a way that con-

24

serves energy will end up with a distribution function of the
form

f(~x, ~p) ∝ e−
β
2m

∑3
j=1 p

2
je−βV (~x) (3.27)

which we will use to simulate a target distribution p(θ|y, I) by
making the analogy ~x ↔ θ, ~p ↔ φ, V (~x) ↔ −β−1 ln p(θ|y, I).
We’ll carry out a simulation procedure where, in one stage of the
procedure, θ and φ are allowed to evolve analogous to ~x and ~p.
Now, Newton’s second law ~F = m~a = d2~x

dt2
tells us how the

potential influences the evolution, since the force is ~F = −~∇V ,
or

m
d2xj
dt2

= − ∂V
∂xj

(3.28)

But since the definition of momentum is

~p = m~v = m
d~x

dt
(3.29)

it’s more convenient to write things in terms of a set of coupled
first-order differential equations5

dpj
dt

= − ∂V
∂xj

= −∂H
∂xj

(3.30a)

dxj
dt

=
1

m
pj =

∂H

∂pj
(3.30b)

The Hamiltonian Monte Carlo procedure is a random walk
through parameter space, just like a Markov Chain Monte Carlo,
except the proposed jump, instead of being drawn from a spec-
ified jump distribution, is performed in a combined parameter-
and-momentum way using the joint distribution

p(θ,φ|y, I) = p(θ|y, I) p(φ|I) (3.31)

5The last form, in terms of the total energy, also known as the Hamilto-
nian, H = 1

2m

∑3
j=1 p

2
j + V (~x), is not important for our purposes, but it’s

the basis of the field of Hamiltonian mechanics, which is very powerful for
dealing with situations where the system is described in terms of more com-
plicated coördinates than the standard Cartesian (x1, x2, x3) = (x, y, z).

analogous to (3.27):

1. The chain is at some position θt−1. Draw a momentum
φt−1 from a normal distribution N(0,M). (The matrix M,
which is generally diagonal, but need not have identical
diagonal elements, is the equivalent of the quantity m/β in
the physical analogy.)

2. Simulate evolution for some time under the equations

β
dθ

dt
= M−1φ (3.32a)

β
dφ

dt
=

∂

∂θ
ln p(θ|y, I) (3.32b)

which are analogous to the equations of motion (3.30). Call
the point you arrive at (θ∗,φ∗).

3. If the simulation of continuous evolution were perfect,
energy would be conserved, and the joint distribution
(3.31) would have the same value at (θ∗,φ∗) as it did at
(θt−1,φt−1). But since it’s imperfect (evolving differential
equations is somewhat expensive, so we don’t want to blow
our computing budget on the evolution), we will construct
a Metropolis ratio

r =
p(θ∗,φ∗|y, I)

p(θt−1,φt−1|y, I)
=

p(θ∗|y, I)p(φ∗|I)

p(θt−1|y, I)p(φt−1|I)
(3.33)

and accept or reject the new point based on that.

4. We then go back to step 1, at our point θt, and re-draw a
new momentum (this is supposed to represent the interac-
tions).

The actual way that the “evolution” is usually done is to break
the finite change in ∆t/β into L steps of size ε, and “leapfrog”
by updating the parameters and momenta in turn as follows

25

(writing θt−1 as θ(0) and θ∗ as θ(εL) and likewise for φ:

φ(ε/2) = φ(0) +
ε

2

∂

∂θ
ln p(θ|y, I)

∣∣∣∣
θ=θ(0)

(3.34a)

θ(ε) = θ(0) + εM−1φ(ε/2) (3.34b)

φ(3ε/2) = φ(ε/2) + ε
∂

∂θ
ln p(θ|y, I)

∣∣∣∣
θ=θ(ε)

(3.34c)

θ(2ε) = θ(ε) + εM−1φ(3ε/2) (3.34d)

...

θ(Lε) = θ([L− 1]ε) + εM−1φ([2L− 1]ε/2) (3.34e)

φ(Lε) = φ([2L− 1]ε/2) +
ε

2

∂

∂θ
ln p(θ|y, I)

∣∣∣∣
θ=θ(L)

(3.34f)

Tuesday 11 April 2017 – refer to Chapter 14
of Kruschke, Section 12.6 and/or Appendix C
of Gelman, or Section 8.3 of McElreath

3.4 Programming HMC with Stan

Since coding up Hamiltonian Monte Carlo by hand is even more
difficult than for other types of MCMC, we’ll use a library to
do it for us: the software package Stan.6 Like JAGS, it’s got
its own programming language, which is based on a hybrid of
BUGS and C++, but there is an RStan interface which we’ll
use:

> library(rstan)

Loading required package: ggplot2

6It’s written Stan and not STAN because it’s named after Stanis law
Ulam, just as the Gibbs Sampler is named after Physicist Josiah Gibbs.
It is now also associated with the backronym “Sampling through adaptive
neighborhoods”.

Loading required package: StanHeaders

rstan (Version 2.14.1, packaged: 2016-12-28 14:55:41 UTC, GitRev: 5fa1e80eb817)

For execution on a local, multicore CPU with excess RAM we recommend calling

rstan_options(auto_write = TRUE)

options(mc.cores = parallel::detectCores())

Since I’m running this on a multicore laptop which isn’t doing
anything else at the moment, I’ll follow the suggestion;

> rstan_options(auto_write = TRUE)

> options(mc.cores = parallel::detectCores())

To give a minimal working example of the language, I’ll go back
to our old example of a single draw from a binomial, where the
parameter θ has a uniform prior:

> modelString = "

+ data {

+ int<lower=0>n ;

+ int y ;

+ }

+ parameters {

+ real<lower=0,upper=1> theta ;

+ }

+ model {

+ y ~ binomial(n,theta) ;

+ theta ~ beta(1,1) ;

+ }

+ "

We have to process this model with RStan; the nice thing is
that unlike with JAGS, we don’t have to write it out to disk
(although it is often easier to put he model in a separate file
and edit that); we can provide the string containing the model:

> stanDSO = stan_model(model_code=modelString)

starting worker pid=18630 on localhost:11849 at 13:37:44.660

26

It’s actually compiled the model using C++, into something
called a dynamic shared object (DSO) which can be used with-
out further compilation. There were some scary-looking compi-
lation warnings, which don’t appear to make a difference. Now
we have a command to actually do the sampling:

> stanFit = sampling(object=stanDSO, data=list(n=4,y=3),

+ chains=3, warmup=500, iter=4000, seed=201704101)

starting worker pid=18856 on localhost:11849 at 13:39:05.538

starting worker pid=18865 on localhost:11849 at 13:39:05.709

starting worker pid=18874 on localhost:11849 at 13:39:05.889

SAMPLING FOR MODEL ’b03824edadb60a7db4ccc69b7b478bfa’ NOW (CHAIN 1).

Chain 1, Iteration: 1 / 4000 [0%] (Warmup)

Chain 1, Iteration: 400 / 4000 [10%] (Warmup)

Chain 1, Iteration: 501 / 4000 [12%] (Sampling)

Chain 1, Iteration: 900 / 4000 [22%] (Sampling)

Chain 1, Iteration: 1300 / 4000 [32%] (Sampling)

Chain 1, Iteration: 1700 / 4000 [42%] (Sampling)

Chain 1, Iteration: 2100 / 4000 [52%] (Sampling)

Chain 1, Iteration: 2500 / 4000 [62%] (Sampling)

Chain 1, Iteration: 2900 / 4000 [72%] (Sampling)

Chain 1, Iteration: 3300 / 4000 [82%] (Sampling)

Chain 1, Iteration: 3700 / 4000 [92%] (Sampling)

Chain 1, Iteration: 4000 / 4000 [100%] (Sampling)

Elapsed Time: 0.003924 seconds (Warm-up)

0.026157 seconds (Sampling)

0.030081 seconds (Total)

SAMPLING FOR MODEL ’b03824edadb60a7db4ccc69b7b478bfa’ NOW (CHAIN 2).

Chain 2, Iteration: 1 / 4000 [0%] (Warmup)

Chain 2, Iteration: 400 / 4000 [10%] (Warmup)

Chain 2, Iteration: 501 / 4000 [12%] (Sampling)

Chain 2, Iteration: 900 / 4000 [22%] (Sampling)

Chain 2, Iteration: 1300 / 4000 [32%] (Sampling)

Chain 2, Iteration: 1700 / 4000 [42%] (Sampling)

Chain 2, Iteration: 2100 / 4000 [52%] (Sampling)

Chain 2, Iteration: 2500 / 4000 [62%] (Sampling)

Chain 2, Iteration: 2900 / 4000 [72%] (Sampling)

Chain 2, Iteration: 3300 / 4000 [82%] (Sampling)

Chain 2, Iteration: 3700 / 4000 [92%] (Sampling)

Chain 2, Iteration: 4000 / 4000 [100%] (Sampling)

Elapsed Time: 0.004705 seconds (Warm-up)

0.026137 seconds (Sampling)

0.030842 seconds (Total)

SAMPLING FOR MODEL ’b03824edadb60a7db4ccc69b7b478bfa’ NOW (CHAIN 3).

Chain 3, Iteration: 1 / 4000 [0%] (Warmup)

Chain 3, Iteration: 400 / 4000 [10%] (Warmup)

Chain 3, Iteration: 501 / 4000 [12%] (Sampling)

Chain 3, Iteration: 900 / 4000 [22%] (Sampling)

Chain 3, Iteration: 1300 / 4000 [32%] (Sampling)

Chain 3, Iteration: 1700 / 4000 [42%] (Sampling)

Chain 3, Iteration: 2100 / 4000 [52%] (Sampling)

Chain 3, Iteration: 2500 / 4000 [62%] (Sampling)

Chain 3, Iteration: 2900 / 4000 [72%] (Sampling)

Chain 3, Iteration: 3300 / 4000 [82%] (Sampling)

Chain 3, Iteration: 3700 / 4000 [92%] (Sampling)

Chain 3, Iteration: 4000 / 4000 [100%] (Sampling)

Elapsed Time: 0.004161 seconds (Warm-up)

0.026565 seconds (Sampling)

0.030726 seconds (Total)

27

summary(stanFit)$summary

hist(as.array(stanFit)[,1,’theta’],breaks=20,

probability = TRUE)

theta = seq(0,1,length.out = 100)

lines(theta,dbeta(theta,4,2),col=’blue’)

hierString = "

data {

int<lower=0> ntot; // total number of observations

int<lower=0> J; // number of samples

vector[ntot] y; // observational data

int n[J]; // number of observations in a sample

}

parameters {

real mu; // hyperparameter mean for means

real<lower=0> tau; // hyperparameter sd for means

real theta[J]; // mean for each sample

real logsigma; // log-sd for data

}

model {

int pos;

theta ~ normal(mu,tau);

// Suggestion from sec 15.2 of Stan manual

// ’Ragged data structures’

pos = 1;

for (j in 1:J) {

segment(y, pos, n[j])

~ normal(theta[j], exp(logsigma));

pos = pos + n[j];

}

}

"

hierDSO = stan_model(model_code=hierString)

y=list(list(62,60,63,59),

list(63,67,71,64,65,66),

list(68,66,71,67,68,68),

list(56,62,60,61,63,64,63,59))

J = length(y)

n = rep(0/0,J)

for (j in 1:J) {n[j] = length(y[[j]])}

unlist(y)

hierFit = sampling(object=hierDSO,

data=list(y=unlist(y),n=n,ntot=sum(n),J=J),

chains=3, warmup=500, iter=4000, seed=201704102)

summary(hierFit)$summary

pairs(hierFit)

28

	Importance Sampling
	Markov Chain Monte Carlo
	Metropolis and Metropolis-Hastings Algorithms
	Metropolis Algorithm
	Why It Works
	Metropolis-Hastings Algorithm
	Dirichlet Example

	Gibbs Sampler
	Dirichlet Example

	Using JAGS for MCMC
	Example: Hierarchical Normal Model (Gelman 11.6)

	Hamiltonian Monte Carlo
	Maximum Entropy
	Maximum Entropy as a Statistical Principle
	Hamiltonian Mechanics
	Programming HMC with Stan

