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Tuesday 24 January 2017
– Refer to Chapter 1 of Gelman and/or Chap-
ter 4 of Bolstad

0 Preliminaries

0.1 Administrata

• Introductions!

• Outcome of clipboard survey on mathematical and com-
puter background.

• Syllabus

• Instructor’s name (Whelan) rhymes with “wailin’”.

• Books. Note that we’ll be following the nominal required
text fairly loosely, and students are encouraged to refer
to whatever resources best mesh with their learning style.
Note also that there’s a new edition of Bolstad out, so you
might be able to get a better deal on a used copy the 2nd
edition (although that won’t have some of the later chap-
ters, notably Chapter 20 on computational methods).

– Gelman et al, Bayesian Data Analysis, 3rd edition.
This is the nominal textbook for the class, and we’ll
be using it to set the approximate sequence of topics,
notation, etc., and taking exercises from it. Its level
of theoretical mathematical detail is a bit too high for
this course at times, however.

– Bolstad, Introduction to Bayesian Statistics, 2nd or
3rd edition. This book probably has the best perspec-
tive of the recommended texts, but it is organized by
specific problem rather than topics, which is why we’re
not using it as the text. Also, it’s trying to do dou-
ble duty and stand in as an intro stats text for people
who haven’t taken a course in classical statistics, so it

moves a little slowly.

– McElreath, Statistical Rethinking: A Bayesian Course
with Examples in R and Stan, 1st edition. This brand-
new book provides an accessible hands-on introduc-
tion to some Bayesian techniques. It’s designed for
researchers and graduate students in social and natu-
ral sciences, so it assumes a little less math than this
course, but it may be a very good learning tool.1

– Kruschke, Doing Bayesian Data Analysis: A Tutorial
with R, JAGS and Stan this book is very informal
and presents a lot of the concepts by example and
illustration.

– Jaynes, Probability Theory: the Logic of Science. This
is a sort of Bayesian manifesto (written by a Physi-
cist), but it’s got a lot of interesting bits in it, as well
as a clear illustration of a particular Bayesian philoso-
phy (to which I am sympathetic) and some amusingly
snarky quotes. It’s also got a lot of mathematical de-
tail on Bayesian concepts (e.g., a demonstration that
you can derive probability as an obvious extension of
logic).

– Sivia with Skilling, Data Analysis: A Bayesian Tuto-
rial. This is a short book which gives a limited but
insightful introduction to some simple Bayesian con-
cepts and methods.

• Course website: http://ccrg.rit.edu/~whelan/

STAT-489/

– Will contain links to notes and problem sets; course
calendar is probably the most useful.

1This assumption is not entirely inconvenient. Jaynes, when describing
the audience for his book, says: “A previous acquaintance with probability
and statistics is not necessary; indeed, a certain amount of innocence in
this area may be desirable, because there will be less to unlearn.”
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– Course calendar: tentative timetable for course; will
evolve as the semester progresses.

• Course work:

– It’s important to use the outside reading to comple-
ment the presentation in the lectures. I’ll try to keep
the notes up-to-date (also useful for me!) but I can’t
promise they won’t be a few days behind, so it’s a good
idea to get someone’s notes if you have to miss class.

– There will be quasi-weekly homeworks. Collaboration
is allowed an encouraged, but please turn in your own
work, as obviously identical homeworks may not re-
ceive credit.

– We’ll have a longer-term project towards the end of
the semester.

– There will be two prelim exams, in class, and one cu-
mulative final exam.

• Grading:

25% Homework (Problem Sets and Final Project)

20% First Prelim Exam

20% Second Prelim Exam

35% Final Exam

You’ll get a separate grade on the “quality point” scale
(e.g., 3.1667–3.5 is the B+ range) for each of these five
components; course grade is weighted average.

0.2 Outline

1. Bayesian Parameter Estimation (Gelman Chapters 1-5)

2. Bayesian Model Comparison (Gelman Chapters 6-9)

3. Advanced Computational Techniques (Gelman Chapters
10-13)

1 Bayesian Probability

The various techniques of Bayesian data analysis are motivated
by a few basic principles, so once we spell out what it is we’re
trying to calculate, most of the rest is just details on how to
evaluate those quantities. (In contrast, classical statistical tech-
niques often require a number of arbitrary choices to define the
statistical tests of interest.)2

There are two major features that set the Bayesian interpre-
tation of probability apart from the usual frequentist interpre-
tation:

1. A probability can in principle be assigned to any propo-
sition which could be true or false. I.e., the allowable set
of “events” consists not only of the outcomes of repeatable
experiments but of all logical propositions. Notably, that
includes statements about the correctness of models and
parameters having particular values or ranges of values.

2. All probabilities are conditional. I.e., a probability
Pr(A|I) is always defined in the context of some underlying
information (or state of knowledge) I. This is sometimes
referred to as “subjective” because observers with different
states of knowledge I1 and I2 will assign different probabil-
ities to the same event: Pr(A|I1) 6= Pr(A|I2).

1.1 Logic and Probability

The interpretation of probability which makes the most sense in
the Bayesian context is that of extended logic.3 If a proposition
A is known to be definitely true in light of information I, then

2In fact, the reason why Bolstad is structured as a series of applications
is that there really aren’t many different underlying formalisms to develop.

3Hence the title of Jaynes’s book, Probability Theory: The Logic of Sci-
ence.
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Pr(A|I) = 1. If it’s definitely false, Pr(A|I) = 0. If we’re un-
certain about its truth or falsehood, 0 < Pr(A|I) < 1 quantifies
our degree of confidence that A is true given I. Fundamentally,
in this framework, probability is a measure of uncertainty
or lack of knowledge, not necessarily of inherent randomness.

If A represents the outcome of an experiment which we could
somehow arrange to repeat under identical circumstances, then
Pr(A|I) will be approximately equal to the long-term frequency
of the event A. I.e., if we do some large number N of repeti-
tions of the experiment, at the beginning of which we recreate
the situation described by I, the approximate number of experi-
ments in which A will turn out to be true is N×Pr(A|I). In the
classical or “frequentist” approach to statistics, this is the only
sort of event to which we’re allowed to assign a probability, but
in the more general Bayesian framework we are free to assign
probabilities to any logical proposition.

It’s a bit remarkable that the conventional formulation of
probability in terms of set theory is basically equivalent to a
formulation in terms of logic. In particular, the three basic op-
erations used to combine logical propositions can be understood
in terms of logic.

• The complement AC or A is logical negation “not A”, and
can also be written as A′ or ¬A.

• The intersection A∩B is a logical conjunction “A and B”,
which can also be written A∧B or A,B. This is the notation
implicitly used by Gelman: Pr(A,B|I) is the probability
that both A and B are true, given I.

• The union A∪B is a logical “disjunction” “A or B”, which
can also be written A∨B or (somewhat counterintuitively)
A+B.

There are basic rules of probability corresponding to these logi-
cal operations:

• Pr(A|I) + Pr(A|I) = 1.

• The product rule: Pr(A,B|I) = Pr(A|B, I) Pr(B|I).

• The sum rule: if A and B are mutually exclusive, i.e., if
Pr(A,B|I) = 0, then Pr(A ∨B|I) = Pr(A|I) + Pr(B|I).

Note that in this approach, it’s the product rule which is funda-
mental, although in the classical framework, it’s a rearrangement
of the definition of conditional probability Pr(A|B) = Pr(A,B)

Pr(B)
,

which we now understand as

Pr(A|B, I) =
Pr(A,B|I)

Pr(B|I)
(1.1)

1.2 Bayes’s Theorem

Because the logical “and” operation is symmetrical, i.e., A,B is
equivalent to B,A, we can write the product rule in two different
ways:

Pr(A,B|I) = Pr(A|B, I) Pr(B|I) = Pr(B|A, I) Pr(A|I) (1.2)

this can be rearranged into Bayes’s Theorem, which says that

Pr(A|B, I) =
Pr(B|A, I) Pr(A|I)

Pr(B|I)
(1.3)

which is incredibly useful when you naturally know Pr(B|A, I)
but would like to know Pr(A|B, I). For instance, suppose A
refers to “I have terrible-disease-of-the-year (TDY)”, B refers
to “I test positive for TDY”, and I represents the information
that I had no extra risk factors or symptoms for TDY but was
routinely tested, In fact, rather than try to remember which is
A and which is B, let’s use “sick” for A, “healthy” for A, “pos”
for B and “neg” for B. Now suppose 0.1% of people in such
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a group have TDY, the test has a 2% false positive rate (2%
of people without TDY will test positive for it) and a 1% false
negative rate (1% of people with TDY will test negative for it).
This information tells us that:

• Pr(sick|I) = 0.001 so Pr(healthy|I) = 0.999.

• Pr(neg|sick, I) = 0.01 so Pr(pos|sick, I) = 0.99.

• Pr(pos|healthy, I) = 0.02 so Pr(neg|healthy, I) = 0.98.

Additionally, since pos = (pos, sick) ∨ (pos, healthy),

Pr(pos|I) = Pr(pos, sick|I) + Pr(pos, healthy|I)

= Pr(pos|sick, I) Pr(sick|I)

+ Pr(pos|healthy, I) Pr(healthy|I)

= 0.99× 0.001 + 0.02× 0.999 = 0.00099 + 0.01998

= 0.02097

(1.4)

We can then use Bayes’s theorem to show that

Pr(sick|pos, I) =
0.00099

0.02097
≈ 0.04721 (1.5)

I.e., if I test positive for TDY, I have about a 4.7% chance of ac-
tually having the disease. This is a lot less than Pr(pos|sick, I),
which is 99%!

1.2.1 The Hypothetical Population

There’s a nice illustration, among other places, at
http://yudkowsky.net/rational/bayes

that it’s sometimes easier to follow what’s happening in this
argument by considering a population of individuals described
by the probabilities above. So if there are a million people, and

one in a thousand have TDY, that’s 1,000. The other 999,000
do not have it. The 2% false positive rate means that of the
999,000 healthy individuals, 2% of them, or 19,980, will test
positive. The other 979,020 will test negative. The 1% false
negative rate means that of the 1,000 sick individuals, ten will
test negative and the other 990 will test positive. So let’s collect
this into a table:

Positive Negative Total

Sick 990 10 1,000
Healthy 19,980 979,020 999,000

Total 20,970 979,030 1,000,000

(Of course, if we choose a sample of a million individuals out of
a larger population, we won’t expect to get exactly this num-
ber of results, but the representative population is still useful
conceptual construct.)

Translating from numbers in this hypothetical population, we
can confirm that it captures the input information:

P (sick) =
1, 000

1, 000, 000
= .001 (1.6a)

P (positive|healthy) =
19, 980

999, 000
= .02 (1.6b)

P (negative|sick) =
10

1, 000
= .01 (1.6c)

But now we can also calculate what we want, the conditional
probability of being sick given a positive result. That is the
fraction of the total number of individuals with positive test
results that are in the “sick and positive” category:

P (sick|positive) =
990

20, 970
≈ .04721 (1.7)

or about 4.7%, as before.
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A few comments about the hypothetical population construct.
In the disease testing example there really is a population of indi-
viduals that we can talk about, but the whole point of Bayesian
probability is that we can do all the same calculations even when
the proposition in question doesn’t represent a draw from a pop-
ulation. For example, before the New Horizons spacecraft vis-
ited Pluto, it was unknown whether it was larger or smaller (in
radius) than Eris, the most massive Trans-Neptunian Object.
A reasonable summary of the available information would have
been to assign a probability to the proposition “Pluto is larger
than Eris”. But there is not an ensemble of Pluto-Eris pairs
from which ours is drawn. There is one Pluto and one Eris, and
we now know that Pluto is actually larger. On the other hand,
even when a probability does not represent a draw from a pop-
ulation, it can be a useful technique to simulate draws from an
imaginary population described by the same distribution.4 In
fact this is the basis for Markov Chain Monte Carlo and other
Monte Carlo methods which interact with a probability distri-
bution by sampling from it.

1.2.2 Bayes’s Theorem and Data Analysis

In the context of observational science, Bayes’s theorem is most
commonly applied to a situation where H is a hypothesis which
I’d like to evaluate and D is a particular set of data I’ve col-
lected. It’s usually straightforward to work out Pr(D|H, I), the
probability of observing a particular set of data values given a
model, but I generally want to answer the question, what is my
degree of belief in the hypothesis H after the observation. The

4See McElreath Chapter 3: “Sampling the Imaginary” for a lot more on
this point.

answer, according to Bayes’s Theorem, is

Pr(H|D, I) =
Pr(D|H, I) Pr(H|I)

Pr(D|I)
(1.8)

The various quantities in this expression have standard names:

• Pr(H|I) is the prior probability of the hypothesis H, i.e.,
the probability we’d assign based on the background infor-
mation I, without considering the results of the observation.

• Pr(D|H, I) is the sampling distribution which tells us the
probability assigned to the particular data D given the hy-
pothesis H and the background information I.

• Pr(H|D, I) is the posterior probability of the hypothesis
H, considering both the background information I and the
result D of the observation.

• Pr(D|I) is the total probability of the observation be-
ing made given the background information. We’ll have
a lot more to say about this later, but for example if
H1, H2, . . . are a set of mutually exclusive hypotheses, it
can be constructed as Pr(D|I) = Pr(D|H1, I) Pr(H1|I) +
Pr(D|H2, I) Pr(H2|I) + · · · .

Note that if you conduct two observations which result in data
D1 and D2, probability theory gives an easy way to combine the
data. If we let D = D2, D1 in (1.8) above, we get

Pr(H|D2, D1, I) =
Pr(D2, D1|H, I) Pr(H|I)

Pr(D2, D1|I)
(1.9)

On the other hand, the product rule of probabilities tells us

Pr(D2, D1|H, I) = Pr(D2|D1, H, I) Pr(D1|H, I) (1.10a)

and
Pr(D2, D1|I) = Pr(D2|D1, I) Pr(D1|I) (1.10b)
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so

Pr(H|D2, D1, I) =
Pr(D2|D1, H, I) Pr(D1|H, I) Pr(H|I)

Pr(D2|D1, I) Pr(D1|I)

=
Pr(D2|D1, H, I) Pr(H|D1, I)

Pr(D2|D1, I)
(1.11)

where we have applied Bayes’s theorem to the first experiment
to identify Pr(H|D1, I) in the last step. But now we see that

Pr(H|D2, D1, I) =
Pr(D2|H,D1, I) Pr(H|D1, I)

Pr(D2|D1, I)
(1.12)

is just Bayes’s theorem applied to the second experiment, using
the posterior of the first experiment Pr(H|D1, I), as the prior of
the second experiment. So we get the same answer whether we
analyze all the results D = D2, D1 at once, or analyze D1 first
and then update our probability using D2.

Thursday 26 January 2017

2 Estimation of a Single Parameter

2.1 Notation

Most of the propositions we will be interested in will concern the
values of parameters, so rather than a probability Pr(A|I) for
a proposition A, we’ll consider a probability distribution p(θ|I)
for a parameter θ. In the case of a discrete parameter, this will
be what you know as the probability mass function

p(θ|I) = Pr(Θ = θ|I) (2.1)

Note, however, that the formal distinction between a “random
variable” Θ and its value θ is one we won’t generally worry

about, using θ to refer to both. Another notational departure
from most formal statistics books, in which we’ll follow Gelman,
is that we’ll also use the notation p(θ|I) to refer to the probabil-
ity density function when θ is a continuous parameter. So we’ll
mean something like this in that case

p(θ|I) dθ = Pr(θ ≤Θ< θ + dθ) (2.2)

Whether we need to sum or integrate over θ to get a probability
should be apparent from the meaning of θ and the context.5

2.2 Bayesian Parameter Estimation

Our first application of Bayesian inference will be to estimation
of a parameter θ in light of data y = {y1, y2, . . . , yn}. Assume
for concreteness that θ is continuous. If p(θ|I) is the prior prob-
ability distribution for θ, which should be normalized so that∫ ∞

−∞
p(θ|I) dθ = 1 (2.3)

and p(y|θ, I) is the sampling distribution for y given the model
implied by I and the parameter value θ, then Bayes’s theorem
tells us that the posterior distribution for θ should be

p(θ|y, I) =
p(y|θ, I) p(θ|I)

p(y|I)
(2.4)

Note that the posterior must also be normalized so that∫ ∞
−∞

p(θ|y, I) dθ = 1 (2.5)

5This sounds a bit confusing, but given that we’ll be interested in joint
probability distributions where some arguments are continuous and others
discrete, it will be simpler in the long run to use p(θ|I) for a pdf rather
than changing the letter to f .
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On the other hand, the sampling distribution p(y|θ, I), which
is also the likelihood function for θ, is not a density in θ, and
it must be normalized so that if you sum or integrate over all
values of y (not θ), you get 1. The denominator p(y|I) can be
evaluated as

p(y|I) =

∫ ∞
−∞

p(y, θ|I) dθ =

∫ ∞
−∞

p(y|θ, I) p(θ|I) dθ (2.6)

Note that we generally don’t need to calculate this separately,
because it only depends on the data y, not the parameter θ
which we’re trying to estimate. So in fact, we can write the
posterior distribution for θ as

p(θ|y, I) ∝ p(y|θ, I) p(θ|I) (2.7)

where the proportionality sign ∝ means that

p(θ|y, I) = N(y) p(y|θ, I) p(θ|I) (2.8)

where N(y) is some unspecified constant which doesn’t depend
on θ (although it can depend on y). We can calculate the con-
stant if necessary at the end of the problem by enforcing the
normalization condition (2.5). Of course, we could substitute in
(2.8) and solve for

N(y) =
1∫∞

−∞ p(y|θ, I) p(θ|I) dθ
=

1

p(y|I)
(2.9)

so of course everything is consistent.

2.2.1 Example: Bernoulli Trials

To make all this concrete, suppose we have a series of n Bernoulli
trials, i.e., experiments where there are only two possible results,
which we can write as yi = 0 or yi = 1. Let the information I

include the model that these trials are independent, and each
has the same unknown probability θ, where 0 ≤ θ ≤ 1, of the
“success” result yi = 1. Then the probability distribution for
each yi will be

p(yi|θ, I) =

{
θ if yi = 1

1− θ if yi = 0

}
= θyi(1− θ)1−yi (2.10)

and sampling distribution/likelihood function will be

p(y|θ, I) = θy1(1− θ)1−y1θy2(1− θ)1−y2 · · · θyn(1− θ)1−yn

= θy1+y2+···+yn(1− θ)n−(y1+y2+···+yn) = θytot(1− θ)n−ytot
(2.11)

The prior p(θ|I) must be some function of θ which is normalized
so that ∫ 1

0

p(θ|I) dθ = 1 (2.12)

and the posterior will be

p(θ|y, I) ∝ θytot(1− θ)n−ytot p(θ|I) (2.13)

Note that while the posterior is explicitly constructed to consider
all the data y, it depends only on the total number of successes
ytot =

∑n
i=1 yi, and the total number of trials n. In fact, if the

only data we had access to consisted of ytot and n, we would
have a sampling distribution which was binomial

p(ytot|θ, n, I) =
n!

ytot!(n− ytot)!
θytot(1− θ)n−ytot (2.14)

and a posterior

p(θ|ytot, n, I) ∝ p(ytot|θ, n, I) p(θ|I) ∝ θytot(1− θ)n−ytot p(θ|I)
(2.15)
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where we have dropped the binomial coëfficient n!
ytot!(n−ytot)! be-

cause it is independent of θ and can be absorbed into the nor-
malization constant. That means the posteriors p(θ|ytot, n, I)
and p(θ|y, I) are equal up to a θ-independent factor. But since
they must each integrate to 1, they must in fact be equal,

p(θ|ytot, n, I) = p(θ|y, I) (2.16)

which means we’ll draw the same inferences about θ if we know
all the data y or only the summary ytot.

6

Choice of Prior Choosing the appropriate prior distribution
p(θ|I) for the state of knowledge I you’re trying to describe is a
tricky business. If these Bernoulli trials represent flips of a coin,
you might choose a prior distribution that reflects that most
coins are nearly fair. If they represent outcomes of repeated
games between the same two chess players, you might choose
one where θ is relatively unlikely to be close to 1/2 (because
any two players are unlikely to be evenly matched). One choice
is to assume we know nothing about the Bernoulli trials, and
consider any value of θ to be equally likely,7 which gives a prior
distribution

p(θ|I) = 1, 0 ≤ θ ≤ 1 (2.17)

Then the posterior distribution will be

p(θ|y, I) ∝ θytot(1− θ)n−ytot (2.18)

Now, it turns out that there is an exact solution to the integral∫ 1

0

θytot(1− θ)n−ytot dθ =
ytot!(n− ytot)!

(n+ 1)!
(2.19)

6For those of you who’ve taken Math Stat, this is a reflection of the fact
that ytot is a sufficient statistic for θ, given a value for n.

7This is also a non-trivial assumption, as we’ll see later.

which means that the normalized posterior probability distribu-
tion is

p(θ|y, I) =
(n+ 1)!

ytot!(n− ytot)!
θytot(1− θ)n−ytot (2.20)

The posterior distribution in this case is a beta distribution with
parameters α = ytot + 1 and β = n− ytot + 1.

Numerical Computation Let’s put aside the analytical
trick, and consider the problem again from a numerical point
of view, using the R commands

> theta = seq(from=0, to=1, length.out = 1000)

> d_theta = theta[2]-theta[1]

> prior = dunif(theta)

> ytot = 3

> n = 4

> likelihood = dbinom(ytot,n,theta)

> posterior = prior * likelihood

> posterior = posterior / (sum(posterior) * d_theta)

> plot(theta,posterior,’l’)

The resulting plot looks like this
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1.
0
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We can do various things to summarize this posterior distribu-
tion. For example, its expectation value is

E(θ|y, I) =

∫ 1

0

θ p(θ|y, I) dθ (2.21)

Numerically, we can evaluate it in R as

> sum(theta*posterior)*d_theta

[1] 0.6666661

Note that in general, we can use the properties of the Beta
distribution to write

E(θ|y) =
ytot + 1

n+ 2
(2.22)

which we can verify in this case is 3+1
4+2

= 4
6

= 2
3
.

Tuesday 31 January 2017 – Refer to Chapter
2 of Gelman

2.3 Summarizing a Posterior

The result of Bayesian parameter estimation is a posterior prob-
ability distribution p(θ|y, I). For instance, if we conduct n
Bernoulli trials and observe ytot successes, and start with a uni-
form prior on the probability θ of success, we know the posterior
is

p(θ|y, I) =
(n+ 1)!

ytot!(n− ytot)!
θytot(1− θ)n−ytot (2.23)

which looks like this:
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Posterior for ytot = 3, n = 4

Sometimes, though, we’re looking for a few numbers to summa-
rize the distribution: what is our best-guess value of θ? How far
is θ likely to be away from that value? What are the chances that
θ is in a particular range of values? What is a range of values
that’s reasonably likely to contain θ? Most of these are things
you may already know how to construct from a probability dis-
tribution. The difference is that now they’re direct statements
about the parameter of interest, rather than statements about
hypothetical alternative data you might have observed.

Here are the definitions and illustrations of some of the quan-
tities you’re likely to want to derive from a posterior.

2.3.1 Moments of the posterior distribution.

Expectation Value As with any probability distribution, you
can calculate the mean or expectation value of the distribution

10



to get a point estimate:

E(θ|y, I) =

∫ ∞
−∞

θ p(θ|y, I) dθ (2.24)

Variance Likewise, you can get a sense of the spread of the
distribution using the variance:

V (θ|y, I) = E
(
[θ − E(θ|y, I)]2

)
=

∫ ∞
−∞

[θ − E(θ|y, I)]2 p(θ|y, I) dθ
(2.25)

2.3.2 Percentiles of the posterior distribution.

The posterior is a probability distribution, and so you can use
it to make probabilistic statements about the value of θ. In
particular,

Pr(θ1 < θ < θ2|y, I) =

∫ θ2

θ1

p(θ|y, I) dθ (2.26)

Sometimes that’s what you want to know, like what’s the prob-
ability that θ < 1

2
. But more often, to summarize the distri-

bution, you’ll want to go the other way, and ask for the theta
values which contain a particular fraction of the probability dis-
tribution.

Median These probability statements can be used to get a
point estimate, the median of the posterior. If we call it θ̃, it’s
defined as the value that has half of the posterior probability
below and half above.

Pr(θ < θ̃|y, I) =

∫ θ̃

−∞
p(θ|y, I) dθ =

1

2
(2.27)

For the posterior we’ve been considering, we can plot the me-
dian, along with the mean:
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Posterior for ytot = 3, n = 4

We’ve also shown the mode, which is the parameter value which
maximizes the posterior distribution. A standard name for that
is the maximum a posteriori (MAP).

Plausible Intervals More often, we are interested in a range
of values which contains some particular probability, say 68% or
90% or 95%, so that

Pr(θ` < θ < θu|y, I) =

∫ θu

θ`

p(θ|y, I) dθ = 1− α (2.28)

This is called a plausible interval or credible interval, and it’s
qualitatively like a confidence interval. But note that, unlike a
confidence interval, it really is a statement about the unknown
parameter value based on the observation we actually made, and
not a statement about the possible outcomes of other random
measurements that could have occurred.
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As with a confidence interval, there are many choices of a
range of values which include a given total probability. They
include an Upper Limit, for which Pr(θ < θu) = 1 − α. We
show this for α = 0.05, i.e., a 95% upper limit:
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a Lower Limit, for which Pr(θ` < θ) = 1− α:
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a Symmetric Interval, for which Pr(θ < θ`) = α
2

= Pr(θ > θu)
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One appealing choice is the Highest Density Region (HDR),
which is the plausible interval made up of the parameter values
with the highest posterior pdf values (so the MAP value will
always be part of the HDR):
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If the posterior pdf is continuous, the boundaries of the HDR will
be at the same posterior value. One of the appealing features
of the HDR is that it can produce either a one-sided or two-
sided interval, depending on the shape of the posterior. For
instance, if we had seen four successes in four trials, the HDR
would produce a lower limit on θ:
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2.3.3 Predictive Distributions

Another thing you can do with the posterior distribution for the
parameter θ is make predictions about future measurements.
Suppose ỹ is the outcome of a future observation which is also
determined by the parameter θ, and has sampling distribution
p(ỹ|θ, I).8 It is then reasonable to ask about p(ỹ|y, I), the prob-
ability distribution you’d assign to the future measurements if
you knew about the past measurements. We can get this by
constructing the joint probability distribution9

p(ỹ, θ|y, I) = p(ỹ|θ,y, I) p(θ|y, I) = p(ỹ|θ, I) p(θ|y, I) (2.29)

8This may or may not have the same functional form as p(y|θ, I). For
instance, in our Bernoulli trials experiment, we may be doing an additional
ñ trials, where ñ need not be the same as n.

9The fact that p(ỹ|θ,y, I) = p(ỹ|θ, I) is telling us that if we know the
actual parameter value θ, knowing the original data y doesn’t tell us any
more about the future data ỹ.
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and marginalizing

p(ỹ|y, I) =

∫ ∞
−∞

p(ỹ, θ|y, I) dθ =

∫ ∞
−∞

p(ỹ|θ, I) p(θ|y, I) dθ

(2.30)
It’s worth noting that there are two sources of uncertainty in
this posterior predictive distribution. Even if we knew θ, the
sampling distribution p(ỹ|θ, I) would only make a probabilistic
statement about the future data ỹ. But on top of that, we
have uncertainty built into the posterior distribution p(θ|y, I).
(This is why it’s important not to just set θ to the most likely
value in light of y and then use that exact value to make future
predictions. It understates the uncertainty.)

Of course, we can also apply this technique using the prior
distribution rather than the posterior, and obtain what’s called
a prior predictive distribution

p(y|I) =

∫ ∞
−∞

p(y, θ|I) dθ =

∫ ∞
−∞

p(y|θ, I) p(θ|I) dθ (2.31)

This is of course the denominator of Bayes’s theorem, which
we’ve known by other names, such as the marginalized sampling
distribution.

2.4 Calculational Techniques

So how do we actually work with posteriors and turn these
concepts into quantitative results. There are a few techniques
(nicely summarized in Statistical Rethinking, BTW.

• Exact expressions. If you’re lucky, and your problem is
particularly simple, you may be able to solve for certain
quantities analytically. This is pretty rare in real-world
situations (and not so important now that computational
power makes numerical techniques feasible), but it is some-
times useful for getting a broad picture of a phenomenon.

• Grid approximation. This is the simplest numerical tech-
nique, and the one we’ve used so far. You just lay down a
bunch of discrete points in the parameter region of interest,
evaluate (or calculate) the posterior at those points, and
replace any integrals with sums over the grid. The grid ap-
proximation is nice for getting an intuitive sense of what’s
being calculated, but it doesn’t scale very well when you
have a lot of parameters to worry about. I can lay down
a thousand points in one dimension, but if I have, say, 9
parameters of interest, even 10 points in each direction will
give me a 109 = one billion-point grid.

• Gaussian approximation. If the posterior is simple
enough, we can learn a lot about it by approximating it
with a Gaussian around the MAP value. More on this in a
moment.

• Monte Carlo/sampling methods. These will be the
topic of the latter part of the course; rather than trying to
evaluate the pdf, there are methods that help you effectively
draw random numbers whose probability distribution is the
posterior pdf of interest.

2.4.1 Gaussian Approximation

One convenient approximation is to expand the posterior about
the MAP point, which we’ll call θ̂.10 We want to use the Taylor
expansion

f(θ) = f(θ̂) + f ′(θ̂)(θ − θ̂) +
1

2
f ′′(θ̂)(θ − θ̂)2 + · · · (2.32)

But the function we want to expand is not p(θ|y, I). That would
cause problems, since e.g., if we truncated the expansion at the

10Note that we ought to call this θ̂(y) or even θ̂(y, I) since it’s a property
of the posterior p(θ|y, I)
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quadratic term, the resulting parabola would go to negative val-
ues, which we know is impossible for a probability distribution.
So instead we expand ln p(θ|y, I), to obtain an expansion of the
form

ln p(θ|y, I) = ln p(θ̂|y, I) +
∂ ln p(θ|y, I)

∂θ

∣∣∣∣
θ=θ̂

(θ − θ̂)

+
1

2

∂2 ln p(θ|y, I)

∂θ2

∣∣∣∣
θ=θ̂

(θ − θ̂)2 + · · ·
(2.33)

But the fact that θ̂ is a local maximum of the function p(θ|y, I)
(and therefore also of ln p(θ|y, I)) tells us two things:

∂ ln p(θ|y, I)

∂θ

∣∣∣∣
θ=θ̂

= 0 (2.34a)

−H(y, I) =
∂2 ln p(θ|y, I)

∂θ2

∣∣∣∣
θ=θ̂

< 0 (2.34b)

Thus, if we expand to the first non-trivial order, we get

ln p(θ|y, I) ≈ ln p(θ̂|y, I)− 1

2
H(y, I)(θ − θ̂)2 (2.35)

or
p(θ|y, I) ≈ p(θ̂|y, I)e−

H
2
(θ−θ̂)2 (2.36)

So we can approximate the posterior, at least near its maximum,
with a Gaussian (normal) distribution of mean θ̂(y, I) and vari-
ance 1

H(y,I)
.

Note that there’s some similarity between the second partial
derivative

H(y) = − ∂2 ln p(θ|y, I)

∂θ2

∣∣∣∣
θ=θ̂

(2.37)

and the Fisher information

I(θ) = E

(
−∂

2 ln p(θ|y, I)

∂θ2

∣∣∣∣θ, I) (2.38)

of classical statistics.

In our Bernoulli trial example, we can actually calculate the
parameters of the Gaussian approximation analytically:

ln p(θ|y, I) = ytot ln θ + (n− ytot) ln(1− θ) + const (2.39)

so
∂ ln p(θ|y, I)

∂θ
=
ytot
θ
− n− ytot

1− θ (2.40)

and
∂2 ln p(θ|y, I)

∂θ2
= −ytot

θ2
− n− ytot

(1− θ)2 (2.41)

A little bit of algebra shows that θ̂ = ytot
n

and 1− θ̂ = n−ytot
n

, so

H =
n2

ytot
+

n2

n− ytot
=

n3

ytot(n− ytot)
(2.42)

the Gaussian approximation estimates the probability distribu-
tion as normal with mean ytot/n and standard deviation√

ytot(n− ytot)
n3

(2.43)

Thursday 2 February 2017

2.4.2 Conjugate Prior Distribution Families

On the most recent homework, you showed that, if the prior pdf
for a Bernoulli experiment happens to be a beta distribution
with parameters α > 0 and β > 0:

p(θ|Iα,β) =
Γ(α + β)

Γ(α)Γ(β)
θα−1(1− θ)β−1 0 < θ < 1 (2.44)
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the posterior pdf will also be a beta distribution, with parame-
ters α + ytot and β + n− ytot:

p(θ|y, Iα,β) =
Γ(α + β + n)

Γ(α + ytot)Γ(β + n− ytot)
θα+ytot−1(1−θ)β+n−ytot−1

0 < θ < 1 (2.45)

I.e., you increment α by the number of successes and β by the
number of failures. We say that the family of beta distributions
is the conjugate prior family for the binomial distribution which
describes this experiment. That doesn’t mean that the prior
distribution has to be a member of this family, but if it is, it
makes it simple to get the posterior. Note in particular that the
uniform prior we’ve been using is a member of this family, with
α = 1 = β:

p(θ|I1,1) =
Γ(2)

Γ(1)Γ(1)
θ1−1(1− θ)1−1 = 1 0 < θ < 1 (2.46)

Incidentally, this behavior can be used to argue that the uniform
prior we started with doesn’t actually describe total ignorance,
since it doesn’t correspond to the minimum possible values of α
and β. If we let α and β go to zero, we obtain what’s known as
the Haldane prior:

p(θ|I0,0) ∝
1

θ(1− θ) 0 < θ < 1 (2.47)

Note that we can’t actually write down the normalization con-
stant because the integral∫ 1

0

dθ

θ(1− θ) (2.48)

diverges at both endpoints.11 This is our first example of an
improper prior. It’s not actually a normalized (or normalizable)

11Put another way, Γ(0) is infinite, so the normalization constant Γ(1)
Γ(0)Γ(0)

would be zero.

prior probability distribution, but it’s the limit of a family of
normalizable distributions. Even though this prior is not nor-
malized, if you go ahead and construct the posterior you get

p(θ|y, I0,0) ∝ θytot−1(1− θ)n−ytot−1 0 < θ < 1 (2.49)

Now, if 0 < ytot < n, i.e., y includes at least one success and one
failure, the posterior is normalizable, even if the prior wasn’t:

p(θ|y, I0,0) =
Γ(n)

Γ(ytot)Γ(n− ytot)
θytot−1(1−θ)n−ytot−1 0 < θ < 1

(2.50)
Working with improper priors is often a convenient shortcut, but
if things get confusing, you can always go back to considering
them the limiting results of a family of proper priors. In this
case, for example, we can find the posterior for small but finite
α and β and then take the limit of the posterior as α and β go
to zero, and verify that the limit is well defined.

2.5 Reparametrization

There’s another way to motivate the improper Haldane prior.
Let’s define a new parameter

λ = ln
θ

1− θ (2.51)

which is the logit or inverse logistic transformation of θ. Since
θ

1−θ is the odds ratio, the probability of success divided by the
probability of failure, λ is the log-odds-ratio associated with the
Bernoulli trial. It’s not to hard to see that λ is a monotonically
increasing function of θ for 0 < θ < 1. In the limit that θ goes
to 0 from above, λ goes to −∞, and in the limit that θ goes to
1 from below, λ goes to ∞.

Now, we could consider how a probability distribution p(θ|I)
for θ can be converted into the corresponding distribution p(λ|I)
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for λ. The key is that θ and λ are continuous parameters, so the
probability distributions are probability densities. To convert,
we have to require that the probability contained in an infinites-
imal range dθ equals that contained in the corresponding range
dλ:

p(θ|I) dθ = p(λ|I) dλ (2.52)

which means

p(λ|I) =
p(θ|I)

dλ/dθ
(2.53)

we really can get the ratio of infinitesimal interval widths by just
differentiating the transformation (2.51):

dλ

dθ
=

d

dθ
(ln θ − ln(1− θ)) =

1

θ
+

1

1− θ =
1− θ + θ

θ(1− θ) =
1

θ(1− θ)
(2.54)

thus
p(λ|I) = θ(1− θ)p(θ|I) (2.55)

of course, to write this as a function of λ, we have to invert the
transformation, which gives the logistic transformation

θ =
1

1 + e−λ
so 1− θ =

e−λ

1 + e−λ
=

1

1 + eλ
(2.56)

So in particular, in terms of the log-odds-ratio parameter, the
Beta function prior becomes

p(λ|Iα,β) =
Γ(α + β)

Γ(α)Γ(β)
θα(1−θ)β =

Γ(α + β)

Γ(α)Γ(β)
(1+e−λ)−α(1+eλ)−β

(2.57)
So we see that the Haldane prior, which is the limit as α and β
go to zero, is uniform in λ:

p(λ|I0,0) = const −∞ < λ <∞ (2.58)

Among other things, this makes it clear why it’s not normaliz-
able; it has a constant value for an infinite range of values. But it

also illustrates that it’s not so simple to choose a non-informative
prior by requiring it to be uniform. The Bayes-Laplace prior is
uniform in θ but not in λ

p(θ|I1,1) = 1 0 < θ < 1 (2.59a)

p(λ|I1,1) = (1 + e−λ)−1(1 + eλ)−1 −∞ < λ <∞ (2.59b)

while the Haldane prior is uniform in λ but not in θ:

p(θ|I0,0) ∝
1

θ(1− θ) 0 < θ < 1 (2.60a)

p(λ|I0,0) = const −∞ < λ <∞ (2.60b)

2.6 Non-informative priors for location and
scale parameters

While it’s a subtle question what the correct prior is to reflect
total ignorance of about the probability parameter for Bernoulli
trials, in some cases it’s fairly simple, specifically if we’re dealing
with a location parameter or a scale parameter.

2.6.1 Location Parameter

A model with a sampling probability p(y|θ, I) is said to have a
location parameter θ if the observed data y can be written as
yi = θ + wi where the probability distribution p(w|I) doesn’t
depend on θ. In that case, the non-informative prior p(θ|I0) for
the location parameter θ should be translationally invariant, i.e.,∫ θ2

θ1

p(θ|I0) dθ = Pr(θ1 < θ < θ2|I0)

= Pr(θ1 + c < θ < θ2 + c|I0) = Pr(θ1 < θ − c < θ2|I0)

=

∫ θ2

θ1

p(θ − c|I0) dθ (2.61)
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The only way this can be true for all θ1 and θ2 is if p(θ− c|I0) =
p(θ|I0), i.e.,

p(θ|I0) = constant (2.62)

This is an improper prior of course, so really has to be thought
of as the limit of some family like

p(θ|I0) =
1

2Θ
−Θ < θ < Θ (2.63)

2.6.2 Scale Parameter

A model with a sampling probability p(y|θ, I) is said to have a
scale parameter θ if the observed data y can be written as yi =
θwi where the probability distribution p(w|I) doesn’t depend on
θ. Now the non-informative prior p(θ|I0) for the scale parameter
θ should be scale invariant. The easiest way to do this is to note
that

ln yi = ln θ + lnwi (2.64)

so under the reparametrization λ = ln θ, the scale parameter θ
is replaced by a location parameter λ. So the non-informative
prior is uniform in λ:

p(λ|I0) = constant (2.65)

If we convert the pdf in λ back to a pdf in θ, we get

p(θ|I0) = p(λ|I0)
dλ

dθ
=
p(λ|I0)
θ

∝ 1

θ
0 < θ <∞ (2.66)

This is also an improper prior, of course.

2.7 Case study: Gaussian Likelihoods

To expand our sense of how the prior distribution of a parameter
is modified by observations to give us the posterior, consider the

relatively simple case where the data are modelled as a set of
n independent measurements to estimate the parameter θ, with
Gaussian errors which have known standard deviations {σi},
which makes the likelihood function

p(y|θ, I) ∝
n∏
i=1

exp

(
− 1

2σ2
i

(yi − θ)2
)

= exp

(
−1

2

n∑
i=1

σ−2i (yi − θ)2
)

(2.67)
We can simplify this by repeated application of the mathemati-
cal trick of completing the square:

a(x−θ)2+b(y−θ)2 = (a+b)

(
θ − ax+ by

a+ b

)2

+constant (2.68)

where by “constant”, we mean a term independent of θ. This
means that

p(y|θ, I) ∝ exp

(
− 1

2σ2
y

(θ − y)2
)

(2.69)

where

y =

∑n
i=1 σ

−2
i yi∑n

i=1 σ
−2
i

(2.70)

is a weighted average of the measurements, with a weighting
equal to the inverse variance and

σ2
y =

1∑n
i=1 σ

−2
i

(2.71)

In the special case that all of the measurements have the
same uncertainty, σi = σ, y reduces to the sample mean and
σ2
y = σ2/n, which should be a familiar result from introductory

classical statistics. The fact that the likelihood (2.69) depends
on the data only through the weighted average y shows that this
is a sufficient statistic for the parameter θ.
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If we further assume that the prior on θ is Gaussian

p(θ|I) ∝ exp

(
− 1

2σ2
θ

(θ − µθ)2
)

(2.72)

we can complete the square again to get the posterior on θ:

p(θ|y, I) ∝ p(y|θ, I)p(θ|I) ∝ exp

(
−1

2

[
σ−2θ (θ − µθ)2 + σ−2y (θ − y)2

])

∝ exp

−1

2

(σ−2θ + σ−2y )

(
θ − σ−2θ µθ + σ−2y y

σ−2θ + σ−2y

)2

(2.73)

So we see that the Gaussian distribution is the conjugate prior
family for a Gaussian likelihood. If the prior is a Gaussian, the
posterior will also be a Gaussian. The mean will be the weighted
average of the mean of the posterior and the weighted average of
the data, and the variance will be constructed from the variance
of the prior and the likelihood.

Tuesday 7 February 2017 – Refer to Chapter
3 of McElreath

2.8 Sampling as a Computational Method

We’ve mentioned that, given a set of samples from a probability
distribution, you can estimate many quantities associated with
the distribution. We’ll now illustrate how to do this in practice,
using the familiar example of Bernoulli trials, with a uniform
prior

p(θ|I) = 1 0 < θ < 1 (2.74)

a sampling distribution

p(y|θ, I) = θytot(1− θ)n−ytot (2.75)

or equivalently the binomial

p(ytot|n, θ, I) =

(
n

ytot

)
θytot(1− θ)n−ytot (2.76)

We’ve shown that the posterior distribution is a beta distribu-
tion

p(θ|y, I) =
Γ(n+ 2)

Γ(ytot + 1)Γ(n− ytot + 1)
θytot(1−θ)n−ytot 0 < θ < 1

(2.77)
We can draw a sample of size N from the posterior distribution,
since we know it’s a beta distribution:

> n = 4

> ytot = 3

> N = 5

> thetasample = rbeta(N, ytot+1, n-ytot+1)

> thetasample

[1] 0.9159046 0.5313724 0.6895402 0.3615219 0.7491285

The exact values in this random sample will of course be different
for you, and if we generated it again it would also be different
for us:

> thetasample = rbeta(N, ytot+1, n-ytot+1)

> thetasample

[1] 0.8276773 0.8933439 0.7511602 0.6667999 0.5405257

But in fact this is not a random number generator, it’s only
pseudo-random, so we make sure we can reproduce the exact
same set of numbers whenever the code is run by first seeding
the random number generator:

> set.seed(20170207)

> thetasample = rbeta(N, ytot+1, n-ytot+1)
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> thetasample

[1] 0.7642113 0.6134853 0.8822383 0.4125945 0.6273643

> set.seed(20170207)

> thetasample = rbeta(N, ytot+1, n-ytot+1)

> thetasample

[1] 0.7642113 0.6134853 0.8822383 0.4125945 0.6273643

A different seed will give different numbers with no apparent
connection to ours:

> set.seed(20170206)

> thetasample = rbeta(N, ytot+1, n-ytot+1)

> thetasample

[1] 0.9198038 0.8641902 0.4458955 0.7468526 0.1645095

Now, let’s generate a sample of an interesting size.

> set.seed(20170207)

> N = 10000

> thetasample = rbeta(N, ytot+1, n-ytot+1)

We can plot the sequence of values in the sample:

> plot(thetasample,type=’p’,pch=’.’)
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Already we can see that there seem to be more values above 0.5
than below. We can produce a histogram to make this more
visible:

> hist(thetasample)

Histogram of thetasample
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There’s the usual question about how to bin the histogram to
make it look best, but the rethinking package has a nice function
that fits a smooth curve to the sampling histogram and produces
an estimate of the posterior density. We can plot this along with
the known beta pdf:

> library(rethinking)

> dens(thetasample)

> d_theta = 0.001

> theta = seq(from=0, to=1, length.out=1000)

> posterior = dbeta(theta,ytot+1,n-ytot+1)

> lines(theta,posterior,col="blue")
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Note that in this problem we knew the posterior pdf was a beta
distribution, which was useful both for plotting and for generat-
ing the sample. But in a more complicated problem that might
not be the case. We can instead construct the posterior on a
grid using Bayes’s theorem and the uniform prior:

> posterior2 = dbinom(ytot,n,theta)

> posterior2 = posterior2/sum(posterior2)

> plot(theta,posterior2,type=’l’)

0.0 0.2 0.4 0.6 0.8 1.0

0.
00

00
0.

00
05

0.
00

10
0.

00
15

0.
00

20

theta

po
st

er
io

r2

Note that we’ve normalized the posterior so that its sum is 1,
not its integral. This means we’re talking about the posterior
probability p(θ|y, I) dθ associated with each point on the grid,
rather than the probability density.

We can also generate the sample a different way, by drawing
with replacement from our grid of values, with probability given
by the posterior, and verify that we get the same distribution:

> thetasample2 = sample(theta,size=N,prob=posterior2,

+ replace=TRUE)

> dens(thetasample2)

> lines(theta,posterior2/d_theta,col="blue")
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Note that we needed to divide by dθ to make the comparison
plot, since dens() does plot the estimated probability density.

Given either this grid approximation or the sample, we
can estimate things like the posterior expectation E(θ|y, I) =∫ 1

0
θ p(θ|y, I) dθ:

> mean(thetasample2)

[1] 0.6655133

> sum(posterior2*theta)

[1] 0.6666661

The normalization that the grid posterior represents p(θ|y, I) dθ
makes it simpler to estimate expectation values which are asso-
ciated with integrals. We can also work out other summaries of
the posterior in a straightforward way:

> median(thetasample2)

[1] 0.6826827

> var(thetasample2)

[1] 0.03219942

> sum(posterior2*(theta-sum(posterior2*theta))^2)

[1] 0.0317459

> sd(thetasample2)

[1] 0.179442

If we want to integrate up to get the probability that e.g., θ < 1
2
,

we can take advantage of the fact that inequalities applied to the
sample end up being boolean vectors. Thus the average is the
fraction for which the value is 1 i.e., the statement is true:

> mean(thetasample2<0.5)

[1] 0.1888

Similarly, since the grid posterior is normalized to sum to one,
the probability of the proposition can be got by summing the
probability associated with all the values for which it’s true:

> sum(posterior2[theta<0.5])

[1] 0.1875001

For completeness, we verify that the various quantities agree for
the samples constructed in two different ways. Of course, they
differ slightly because of the randomness of the sampling:

> mean(thetasample);mean(thetasample2)

[1] 0.6696085

[1] 0.6655133

> median(thetasample);median(thetasample2)

[1] 0.6902752

[1] 0.6826827

> sd(thetasample);sd(thetasample2)

[1] 0.17831

[1] 0.179442

> mean(thetasample<0.5)

[1] 0.1861
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If we want to get the highest density interval, rethinking hap-
pens to have a function for this:

> HPDI(thetasample2,prob=0.95)

|0.95 0.95|

0.3273273 0.9759760

Or we can even automatically plot it on the pdf:

> dens(thetasample2,show.HPDI = 0.95)
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One very nice feature of the sampling approach is that it han-
dles reparametrization automatically. If we do the logit trans-
formation λ = ln θ

1−θ , we showed last time that the posterior pdf
is

p(λ|y, I) =
1

B(ytot + 1, n− ytot + 1)
(1+e−λ)−(ytot+1)(1+eλ)−(n−ytot+1)

(2.78)

where

B(ytot + 1, n− ytot + 1) =
Γ(ytot + 1)Γ(n− ytot + 1)

Γ(n+ 2)
(2.79)

This density conversion comes out automatically if we just apply
the transformation to each value of the sample:

> lambdasample=logit(thetasample)

> dens(lambdasample)

> lambda3 = seq(from=-5,to=5,length.out=1000)

> pdf_lambda3 = (

+ (1+exp(-lambda3))^(-(ytot+1))

+ * (1+exp(lambda3))^(-(n-ytot+1))

+ ) / ( beta(ytot+1,n-ytot+1) )

> lines(lambda3,pdf_lambda3,col="blue")
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3 Estimation with Multiple Parame-

ters

So far we have considered procedures to estimate a single param-
eter θ, but it’s often the case that models can contain multiple
parameters. Notationally, we can represent the m parameters
as a vector θ ≡ θ1, θ2, . . . , θm. Then most of the quantities are
as before. We can write the sampling distribution for a data
vector y as p(y|θ, I), and the prior distribution for the param-
eters as p(θ|I). This is a probability density in any continuous
parameters within θ. The posterior distribution is

p(θ|y, I) ∝ p(y|θ, I)p(θ|I) (3.1)

with the normalization chosen so that the posterior distribution
is normalized∫

p(θ|y, I) dmθ =

∫ ∞
−∞
· · ·
∫ ∞
−∞

p(θ|y, I) dθ1 · · · dθm = 1 (3.2)

3.1 Gaussian Approximation and Hessian
Matrix

One aspect which behaves slightly differently is expansion about
the maximum a posteriori (MAP) estimate of the parameter
vector θ. The MAP point is defined by setting all of the partial
derivatives of the posterior with respect to the parameters to
zero:

∂ ln p(θ|y, I)

∂θj

∣∣∣∣
θ=θ̂

= 0 j = 1, 2, . . . ,m (3.3)

We can then do a multi-variable Taylor expansion of the log-
likelihood

ln p(θ|y, I) = ln p(θ̂|y, I)

+
1

2

m∑
j=1

m∑
k=1

∂2 ln p(θ|y, I)

∂θj ∂θk

∣∣∣∣
θ=θ̂

(θj − θ̂j)(θk − θ̂k) + · · · (3.4)

If we define the Hessian matrix H by

Hjk =
∂2[− ln p(θ|y, I)]

∂θj ∂θk

∣∣∣∣
θ=θ̂

(3.5)

This then gives us a Gaussian approximation

p(θ|y, I) ≈ p(θ̂|y, I) exp

(
−1

2

m∑
j=1

m∑
k=1

(θj − θ̂j)Hjk(θk − θ̂k)
)

∝ exp

(
−1

2
[θ − θ̂(y, I)]TH(y, I)[θ − θ̂(y, I)]

)
(3.6)

where e.g., θ =

θ1
...
θm

 is being treated as a column vector and

θT is the row vector which is its transpose. See AppendixA
for some reminders about the relevant matrix notation. This
approximate distribution is known as a multivariate normal or
multivariate Gaussian distribution.

3.2 Marginalization

It is often the case that we care about some parameters and not
others. For simplicity, assume m = 2, and we’re interested in θ1
but not θ2. (The extension to multiple parameters in each set
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is straightforward.) The marginal posterior distribution for θ1
will be

p(θ1|y, I) =

∫ ∞
−∞

p(θ1, θ2|y, I) dθ2 (3.7)

Note that in principle, if all we care about is θ1, we could already
marginalize over θ2 at the likelihood stage, since

p(θ1|y, I) ∝ p(y|θ1, I) p(θ1|I) (3.8)

and

p(y|θ1, I) =
p(y, θ1|I)

p(θ1|I)
=

∫∞
−∞ p(y, θ1, θ2|I) dθ2

p(θ1|I)

=

∫ ∞
−∞

p(y, θ2|θ1, I) dθ2

=

∫ ∞
−∞

p(y|θ1, θ2, I) p(θ2|θ1, I) dθ2

(3.9)

However, we will often be interested in multiple parameters, in
which case it’s easier to work with the full posterior p(θ|y, I).

3.2.1 Marginalization and Parameter Accuracy

To get a sense of the effects of marginalization, suppose that we
have a posterior for two parameters which is of the Gaussian
form

p(θ1, θ2|y, I) ∝ exp

(
−1

2
[H11(θ1 − θ̂1)2

+ 2H12(θ1 − θ̂1)(θ2 − θ̂2) +H22(θ2 − θ̂2)2]
)

(3.10)

For concreteness, let’s assume H =

(
3 −2
−2 2

)
and θ̂ =

(
4
3

)
,

and use R to make a contour plot of the log-posterior:

> H = matrix(c(3,-2,-2,2),ncol=2)

> theta1hat = 4

> theta2hat = 3

> Ngrid = 101

> theta1 = seq(from=theta1hat-4,to=theta1hat+4,

+ length.out=Ngrid)

> theta2 = seq(from=theta2hat-4,to=theta2hat+4,

+ length.out=Ngrid)

> ones = rep(1,Ngrid)

> theta1grid = outer(theta1,ones,’*’)

> theta2grid = outer(ones,theta2,’*’)

We’ve generated two 101 × 101 matrices theta1grid and
theta2grid to act as a grid of θ1, θ2 values. Each row of
theta1grid is filled with the corresponding θ1 value:

> theta1grid[1:5,1:5]

[,1] [,2] [,3] [,4] [,5]

[1,] 0.00 0.00 0.00 0.00 0.00

[2,] 0.08 0.08 0.08 0.08 0.08

[3,] 0.16 0.16 0.16 0.16 0.16

[4,] 0.24 0.24 0.24 0.24 0.24

[5,] 0.32 0.32 0.32 0.32 0.32

and column of theta2grid is filled with the corresponding θ2
value:

> theta2grid[1:5,1:5]

[,1] [,2] [,3] [,4] [,5]

[1,] -1 -0.92 -0.84 -0.76 -0.68

[2,] -1 -0.92 -0.84 -0.76 -0.68

[3,] -1 -0.92 -0.84 -0.76 -0.68

[4,] -1 -0.92 -0.84 -0.76 -0.68

[5,] -1 -0.92 -0.84 -0.76 -0.68

> logpost = -0.5 * (
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+ H[1,1] * (theta1grid-theta1hat)^2

+ + 2 * H[1,2] * (theta1grid-theta1hat)

+ *(theta2grid-theta2hat)

+ + H[2,2] * (theta2grid-theta2hat)^2

+ )

Note that we’ve defined the log-posterior (which we know up
to an additive constant) so that it’s maximum value is zero,
but that may not always be the case, so it’s useful to impose it
at this stage, in order to avoid underflow or overflow when we
exponentiate it:

> max(logpost)

[1] 0

> logpost = logpost - max(logpost)

> contour(theta1,theta2,logpost,levels=0:-10)

> posterior = exp(logpost)

> posterior = posterior / sum(posterior)

> contour(theta1,theta2,posterior)
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Since we have the posterior evaluated on a grid, we can do the
marginalization integral by summing up all the posterior values
at a given θ1:

p(θ1|y, I) dθ1 =

∫ ∞
−∞

p(θ1, θ2|y, I) dθ1 dθ2 (3.11)

I don’t know of a clever way to vectorize this, so I’ll just use
a loop to sum all of the entries in each row, after initializing a
vector of the appropriate length to zero:

> post_marg1 = 0.0 * theta1

> for (i in 1:Ngrid){post_marg1[i]=sum(posterior[i,])}

Note that this is automatically normalized to sum to 1, the way
we’ve constructed it. Note also that we won’t get the right pos-
terior for θ1 if we insert our best guess value for θ2 and write
something like p(θ1|θ̂2,y, I)). Rather than summing the prob-
ability surface, this amounts to taking a slice through it at its
highest point, and it underestimates the uncertainty in θ1:
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> post_max1 = posterior[theta2grid==theta2hat]

> post_max1 = post_max1/sum(post_max1)

> plot(theta1,post_max1,type=’l’,col=’red’)

> lines(theta1,post_marg1,col=’blue’)
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We can also compute the variance of θ1 using the original grid
posterior, or the marginal posterior (in blue above), or the in-
correct “slice” distribution (in red above), and see that the first
two match, but the third underestimates the variance:

> sum(posterior*(theta1grid-theta1hat)^2)

[1] 0.9920522

> sum(post_marg1*(theta1-theta1hat)^2)

[1] 0.9920522

> sum(post_max1*(theta1-theta1hat)^2)

[1] 0.3333333

We can also repeat all of this for θ2 (note that to marginalize,
we need to sum all of the entries in each column):

> post_marg2 = 0.0 * theta2

> for (i in 1:Ngrid){post_marg2[i]=sum(posterior[,i])}

> post_max2 = posterior[theta1grid==theta1hat]

> post_max2 = post_max2/sum(post_max2)

> plot(theta2,post_max2,type=’l’,col=’red’)

> lines(theta2,post_marg2,col=’blue’)
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> sum(posterior*(theta2grid-theta2hat)^2)

[1] 1.482658

> sum(post_marg2*(theta2-theta2hat)^2)

[1] 1.482658

> sum(post_max2*(theta2-theta2hat)^2)

[1] 0.4999998

Finally, we can estimate the posterior covariance of θ1 and θ2
(for which we need the joint posterior):

> sum(posterior*(theta1grid-theta1hat)

+ *(theta2grid-theta2hat))

[1] 0.9883074

If we put together our numerical estimates for the variances and
covariance, it looks like we have a variance-covariance matrix

Σ = Cov(θ|y, I) ≈
(

1 1
1 1.5

)
(3.12)
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We can check and see that in fact this is the inverse of the
Hessian matrix, Σ = H−1:

> solve(H)

[,1] [,2]

[1,] 1 1.0

[2,] 1 1.5

This is the general form of the multivariate normal distribution:

p(θ|θ̂,Σ) ∝ exp

(
−1

2
(θ − θ̂)TΣ−1(θ − θ̂)

)
(3.13)

In comparison, the “maximum slices” through the posterior gave
distributions with variances of 1

3
= 1

H11
and 1

2
= 1

H22
, respec-

tively, which is what we expect from

p(θ1|θ̂2,y, I) ∝ exp

(
−1

2
H11(θ1 − θ̂1)2

)
(3.14a)

p(θ2|θ̂1,y, I) ∝ exp

(
−1

2
H22(θ2 − θ̂2)2

)
(3.14b)

Those slices through the posterior miss out on the posterior
correlations which are apparent in the full posterior.

We can repeat this calculation using samples from the grid-
ded posterior. In the absence of a clever way to sample from a
posterior grid, I’m going to repeatedly draw an index into the
grid arrays, taking advantage of the fact that R stores them
internally as 10201 = (101)(101)-element lists.

> N = 10000

> set.seed(20170209)

> idxsample = sample.int(n=Ngrid*Ngrid,size=N,

+ prob=posterior,replace=TRUE)

> theta1sample = theta1grid[idxsample]

> theta2sample = theta2grid[idxsample]

> plot(theta1sample,theta2sample,pch=’.’)
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The scatter plot looks a little funny, since it only has values at
the grid points, and we can’t see if we’ve chosen the same value
multiple times. We can get around this by adding some “jitter”
in the form of a random offset in θ1 uniformly chosen between
−dθ1

2
and dθ1

2
, and likewise for θ2. In fact, this is more realis-

tic, because we don’t believe the posterior is exactly zero away
from the grid points; in fact, we hope the probability density is
roughly constant in a little box centered on each grid point, or
else we didn’t choose the grid fine enough.12

> dtheta1 = theta1[2]-theta1[1]

> dtheta2 = theta2[2]-theta2[1]

> theta1sample = ( theta1grid[idxsample]

+ + runif(N,min=-0.5*dtheta1,

12Note that Gelman uses this jitter trick to display the data in Figures
1.1 and 1.2, but in that case it is just for plotting purposes because the
variables in question are discrete.
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+ max=0.5*dtheta1) )

> theta2sample = ( theta2grid[idxsample]

+ + runif(N,min=-0.5*dtheta2,

+ max=0.5*dtheta2) )

> plot(theta1sample,theta2sample,pch=’.’)
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We can work with these samples in exactly the way we did when
there was only one parameter, e.g., plotting an estimated pdf:

> library(rethinking)

> dens(theta1sample)

> lines(theta1,post_max1/dtheta1,col=’red’)

> lines(theta1,post_marg1/dtheta1,col=’blue’)
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> dens(theta2sample)

> lines(theta2,post_max2/dtheta2,col=’red’)

> lines(theta2,post_marg2/dtheta2,col=’blue’)
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and likewise estimate the same means, variances, and covariance

> mean(theta1sample)

[1] 3.993434

> mean(theta2sample)

[1] 2.984567

> var(theta1sample)

[1] 1.003869

> var(theta2sample)

[1] 1.471476

> cov(theta1sample,theta2sample)

[1] 0.9870867

Tuesday 14 February 2017 – Refer to Chapter
3 of Gelman

3.3 Example: Normal Sample with Unknown
Mean and Variance

As an illustration of multiple parameter estimation which leads
to familiar results, consider a sample of size n drawn from a
normal distribution of unknown mean µ and variance σ2:

p(y|µ, σ, I) =
n∏
i=1

p(yi|µ, σ, I) =
n∏
i=1

√
σ−2

2π
exp

(
−1

2
σ−2(yi − µ)2

)

=

(
σ−2

2π

)n/2
exp

(
−1

2

n∑
i=1

σ−2(yi − µ)2

)
(3.15)

Since µ is a location parameter and σ is a scale parameter, we’ve
argued that the appropriate non-informative prior is uniform in
µ and lnσ:

p(µ, σ|I) ∝ 1

σ
0 < σ <∞ (3.16)

Note that if we change variables to talk about a density in some
power σα rather than σ, since ln σα = α lnσ, such a distribution
will also be uniform in lnσα as well. So we can just as well write,
for instance,

p(µ, σ2|I) ∝ 1

σ2
0 < σ2 <∞ (3.17)

or even

p(µ, σ−2|I) ∝ 1

σ−2
0 < σ−2 <∞ (3.18)

(Note we have used the fact that σ−2 → ∞ when σ → 0 and
σ−2 → 0 when σ →∞.) Then Bayes’s theorem tells us that

p(µ, σ−2|y, I) ∝ p(y|µ, σ−2, I)

σ−2
(3.19)

with the likelihood

p(y|µ, σ−2, I) = p(y|µ, σ, I) ∝ (σ−2)n/2 exp

(
−σ

−2

2

n∑
i=1

(yi − µ)2

)
(3.20)

We’ve previously shown that completing the square gives

n∑
i=1

(yi − µ)2 = n(y − µ)2 + const (3.21)

where y is the sample mean
∑n

i=1 yi. However, that form is not
sufficient to attach this problem, since the “constant” (which is
independent of the parameters but depends on the data) will get
multiplied by σ−2 and influence the inference of that quantity.
We can work out the constant pretty easily, though, if we write
yi − µ = (yi − y)− (µ− y). Then

(yi − µ)2 = (yi − y)2 − 2(µ− y)(yi − y) + (µ− y)2 (3.22)
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and
n∑
i=1

(yi−µ)2 =
n∑
i=1

(yi−y)2−2(µ−y)
n∑
i=1

(yi−y)+n(µ−y)2 (3.23)

since
∑n

i=1(yi − y), the cross term vanishes, and

n∑
i=1

(yi − µ)2 = (n− 1)s2 + n(µ− y)2 (3.24)

where we have used the definition of the sample variance s2 =
1

n−1
∑n

i=1(yi − y). Thus the joint posterior will have the form

p(µ, σ−2|y, I) ∝ (σ−2)
n
2
−1 exp

(
−σ

−2

2

[
n(µ− y)2 + (n− 1)s2

])
(3.25)

One thing we can see is that the only relevant information from
the data y are the size n, the sample mean y and the sample
variance s2. These three quantities make up the sufficient statis-
tics for the parameters µ and σ−2. It is also instructive to look
at the marginal posteriors p(µ|y, I) and p(σ−2|y, I).

3.3.1 Marginal pdf for the mean

First, we marginalize over σ−2:

p(µ|y, I) ∝
∫ ∞
0

(σ−2)
n
2
−1 exp

(
−σ

−2

2

[
n(µ− y)2 + (n− 1)s2

])
dσ−2

(3.26)
Now, this looks like a pretty terrible integral, but if we define

τ = σ−2
[
n(µ− y)2 + (n− 1)s2

]
(3.27)

we end up with

p(µ|y, I) ∝
[
n(µ− y)2 + (n− 1)s2

]−n/2 ∫ ∞
0

τ
n
2
−1e−τ/2 dτ

(3.28)

Now the integral is actually doable (it’s a Gamma function),
but we don’t care what the result is, since it’s just a number,
independent of µ, which can be absorbed into the normalization
constant. If we likewise pull another constant out of what’s left,
we can write the distribution in the form

p(µ|y, I) ∝
[
1 +

1

n− 1

(µ− y)2

s2/n

]−n/2
(3.29)

This shows that the posterior distribution for

µ− y√
s2/n

(3.30)

is a Student t-distribution with n− 1 degrees of freedom. So in
fact, with this non-informative prior, the plausible interval on
µ will be the same as the corresponding frequentist confidence
interval!

3.3.2 Marginal pdf for the variance

Now, we marginalize instead over µ:

p(σ−2|y, I) ∝
∫ ∞
−∞

(σ−2)
n
2
−1 exp

(
−σ

−2

2

[
n(µ− y)2 + (n− 1)s2

])
dµ

(3.31)
If we define u = (µ− y)

√
σ−2 we end up with

p(σ−2|y, I) ∝ (σ−2)
n
2
−1e−(n−1)σ

−2s2/2(σ−2)−1/2
∫ ∞
−∞

e−nu
2/2 du

∝ (σ−2)
n−1
2
−1 exp

(
−1

2

(n− 1)s2

σ2

)
(3.32)

If we stare at this a bit, we’ll see it’s telling us that the pos-

terior distribution for (n−1)s2
σ2 , given n and s, is a chi-squared
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with n− 1 degrees of freedom. Again, the noninformative prior
makes the familiar frequentist confidence interval arise as the
corresponding Bayesian plausible interval.

If we want to visualize the joint posterior, which will depend
on the data only via y, s2, and n, it’s convenient to change
variables from µ and σ−2 to

t =
µ− y√
s2/n

and χ2 = (n− 1)s2σ−2 (3.33)

Then the joint posterior becomes

p(t, χ2|y, I) ∝ (χ2)
n
2
−1 exp

(
−1

2

[
1 +

t2

n− 1

]
χ2

)
(3.34)

which we see only depends on n, so y and s2 just set the location
and scale. To plot this for some choices of n, let’s evaluate the
pdf on a grid of t and lnχ2 values. We’ll start with n = 5:

> Ngrid = 101

> t = seq(from=-6,to=6,length.out=Ngrid)

> ones = rep(1,Ngrid)

> tgrid = outer(t,ones,’*’)

> n = 5

> nu = n-1

> chisqmax = nu + 6*sqrt(2*nu)

> chisqmin = nu*(nu/chisqmax)^1.4

The range of χ2 values is kind of arbitrary, but we start with the
fact that the expectation value is ν and the standard deviation is
2ν, and we’d like ln ν to be close to the middle of the logarithmic
range.

> logchisq = seq(from=log(chisqmin),to=log(chisqmax),

+ length.out=Ngrid)

> logchisqgrid = outer(ones,logchisq,’*’)

> chisqgrid = exp(logchisqgrid)

> logpost = ( 0.5*n*logchisqgrid

+ - 0.5 * (1+tgrid^2/nu) * chisqgrid

+ )

> max(logpost)

[1] 1.523589

> logpost = logpost - max(logpost)

> posterior = exp(logpost)

> posterior = posterior / sum(posterior)

> contour(t,logchisq,posterior)

The contour plot of p(t, lnχ2|y, I) looks like this

−6 −4 −2 0 2 4 6
−

1
0

1
2

3

We can also plot p(t, χ2|y, I) = p(t, lnχ2|y, I)/χ2:

> chisq = exp(logchisq)

> contour(t,chisq,posterior/chisqgrid)
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We can sample from the posterior in the usual way:

> set.seed(20170214)

> N=10000

> idxsample = sample.int(n=Ngrid*Ngrid,size=N,

+ prob=posterior,replace=TRUE)

> dt = t[2] - t[1]

> dlogchisq = logchisq[2] - logchisq[1]

> tsample = ( tgrid[idxsample]

+ + runif(N,min=-0.5*dt,

+ max=0.5*dt) )

> logchisqsample = ( logchisqgrid[idxsample]

+ + runif(N,min=-0.5*dlogchisq,

+ max=0.5*dlogchisq) )

> plot(tsample,logchisqsample,pch=’.’)
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And finally we can scatter-plot the sampled posterior in t and
χ2:

> chisqsample = exp(logchisqsample)

> plot(tsample,chisqsample,pch=’.’)
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Sampling from the logarithmic grid enables us to get close to
the χ2 = 0 line while also stretching out to higher χ2 values.
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Thursday 16 February 2017

3.4 Multinomial Distribution

3.4.1 Binomial Distribution Revisited

Another example of a problem with multiple parameters is a
multinomial experiment. Recall our previous example of n
Bernoulli trials, but let’s specialize to the case where we treat
the observation as a binomial experiment. Then the sampling
distribution for y, the number of successes (which we’ve called
ytot in the past), was

p(y|θ, I) =
n!

y!(n− y)!
θy(1− θ)n−y, y = 0, 1, . . . , n (3.35)

or, thought of as a likelihood function,

p(y|θ, I) ∝ θy(1− θ)n−y (3.36)

and the conjugate prior family for the probability θ was the
family of beta distributions:

p(θ|Iα,β) =
Γ(α + β)

Γ(α)Γ(β)
θα−1(1−θ)β−1 ∝ θα−1(1−θ)β−1 0 < θ < 1

(3.37)
We can write this in a way that treats “success” and “failure”
more symmetrically, as the first and second of two possible out-
comes of the experiment. We then write the number of successes
as y1 and the number of failures as y2, with the requirement that
y1 + y2 = n. (Note that this is a different notation than what
we’ve used before where yi ∈ {0, 1} was the outcome of the ith
observation. Now yj, j ∈ {1, 2} is the number of results of the
jth kind.) Similarly the probability of success is θ1 and failure
is θ2, where we require θ1 + θ2 = 1. The sampling distribution

or likelihood function is thus

p(y1, y2|θ1, θ2, I) =
n!

y1!y2!
θy11 θ

y2
2 , y1, y2 = 0, 1, . . . ; y1+y2 = n

(3.38)
or

p(y1, y2|θ1, θ2, I) ∝ θy11 θ
y2
2 (3.39)

The conjugate prior family is then written

p(θ1, θ2|Iα1,α2) ∝ θα1
1 θ

α2
2 0 < θ1, θ2 < 1; θ1 + θ2 = 1 (3.40)

The normalization on the probability distribution is a bit funny;
it’s most easily written using the Dirac delta function, as

p(θ1, θ2|Iα1,α2) =
Γ(α1 + α2)

Γ(α1)Γ(α2)
θα1−1
1 θα2−1

2 δ(θ1 + θ2 − 1)

0 < θ1, θ2 < 1 (3.41)

For those of you unfamiliar with the delta function, it’s not a
function in the strict mathematical sense, but it’s operationally
defined by

δ(x) =

{
∞ x = 0

0 x 6= 0
(3.42)

and ∫ ∞
−∞

δ(x) dx = 1 ; (3.43)

for reasonably well-behaved functions f(x), it will obey∫ ∞
−∞

f(x) δ(x− a) dx =

∫ a+ε

a−ε
f(x) δ(x− a) dx = f(a) (3.44)
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The upshot is that when you integrate the joint pdf,∫ ∞
−∞

∫ ∞
−∞

p(θ1, θ2|Iα1,α2) dθ1 dθ2

=
Γ(α1 + α2)

Γ(α1)Γ(α2)

∫ 1

0

∫ 1

0

θα1−1
1 θα2−1

2 δ(θ1 + θ2 − 1) dθ2 dθ1

=
Γ(α1 + α2)

Γ(α1)Γ(α2)

∫ 1

0

θα1−1
1 (1− θ1)α2−1 dθ1 = 1 (3.45)

where the delta function means that the dθ2 integral just sets θ2
to 1 − θ1, and the dθ1 integral is the Beta function, so the pdf
is indeed normalized.

3.4.2 Generalization to Multinomial

To move from the binomial distribution to the multinomial, we
suppose that each of the n trials has J possible outcomes rather
than just 2. (E.g., we’re rolling a 6-sided die rather than flip-
ping a coin.) The data are then y ≡ {yj} ≡ y1, y2, . . . , yJ , the
total number of trials which resulted in each of the J outcomes;
evidentally

∑J
j=1 yj = n. The parameters are θ ≡ {θj} ≡

θ1, θ2, . . . , θJ , the probabilities of each of the outcomes, which
must satisfy

∑J
j=1 θj = 1. The multinomial sampling distribu-

tion is

p(y|θ, I) =
n!∏J
j=1 yj!

J∏
j=1

θ
yj
j yj = 0, 1, . . . ;

J∑
j=1

yj = n

(3.46)
for a likelihood function

p(y|θ, I) ∝
J∏
j=1

θ
yj
j (3.47)

The conjugate prior distribution is a generalization of the beta
distribution known as the Dirichlet distribution, which has pa-
rameters α ≡ {αj} ≡ α1, α2, . . . , αJ :

p(θ|Iα) ∝
J∏
j=1

θ
αj−1
j 0 < θj < 1;

J∑
j=1

θj = 1 (3.48)

The normalization, in case you’re curious, is

p(θ|Iα) =
Γ
(∑J

j=1 αj

)
∏J

j=1 Γ(αj)

(
J∏
j=1

θ
αj−1
j

)
δ

(
J∑
j=1

θj − 1

)
0 < θj < 1

(3.49)
Note that, unlike θ, which has to sum to 1, and y, which has
to sum to n, there’s no global requirement for α. Each of the
elements just has to be positive for normalization purposes.

With this conjugate prior family, the posterior is also a Dirich-
let distribution:

p(θ|y, I) ∝ p(y|θ, I, p(θ|I) ∝
J∏
j=1

θ
αj+yj−1
j (3.50)

we’ve just incremented each αj by the corresponding yj.
As in the binomial case, there are different possible choices

for a Dirichlet prior. If we set all of the αj = 1, we get a
normalized Bayes-Laplace prior which is constant for all of the
allowed combinations of the {θj}. If we take the limit that all
of the αj → 0, we get a Haldane-type improper prior. In that
case, the posterior will have αj = yj, so it will be normalizable
if each possible outcome is observed at least once.

Visualizing the joint distribution (prior or posterior) for θ is
a bit tricky. If we consider 0 < θj < 1, we have a J-dimensional

hypercube of unit size. The surface
∑J

j=1 θj = 1 is then a
J − 1-dimensional simplex connecting the vertices (1, 0, . . . , 0),
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Figure 1: Left: the region of θ1, θ2, θ3 space consistent with the constraint θ1+θ2+θ3 = 1. Right: the grid for a ternary plot on that parameter
space.
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(0, 1, . . . , 0), . . . , (0, 0, . . . , 1). If this is still too abstract, con-
sider J = 3. Then we’re talking about a triangle in the corner of
the unit cube of (θ1, θ2, θ3), with vertices (1, 0, 0), (0, 1, 0), and
(0, 0, 1). If we plot things on this triangle, which has three coor-
dinates with a relationship allowing us to specify one given the
other two, this is known as a ternary plot, as shown in Figure 1
We can make ternary plots of samples drawn from a Dirichlet
distribution using the package ggtern.13

Start with the uniform distribution with α1 = α2 = α3 = 1.
Note that the Dirichlet distribution is not standard in R (which
seems to be lacking in multivariate distributions) so we’ll use
the gtools library:

> library(gtools)

> alpha = c(1,1,1)

> N = 2000

> set.seed(20170216)

> thetasample = rdirichlet(N,alpha)

Now we make the ternary plot using ggtern. Since we’ll want
to make several of these, we’ll define functions that do some of
the boilerplate:

> library(ggtern)

> myframe = function(mysample) {

+ ( data.frame(theta1=mysample[,1],

+ theta2=mysample[,2],

+ theta3=mysample[,3]) )

+ }

> tickvals = seq(.2,1,.2)

> addmyopts = function(myplot) {

+ ( myplot

13Nicholas Hamilton (2016). ggtern: An Extension to ’ggplot2’, for the
Creation of Ternary Diagrams. R package version 2.2.0. https://CRAN.

R-project.org/package=ggtern.

+ + geom_point(size=0.01)

+ + tern_limits(breaks=tickvals,labels=tickvals)

+ + xlab(expression(theta[1]))

+ + ylab(expression(theta[2]))

+ + zlab(expression(theta[3]))

+ + theme_light()

+ )

+ }

> thetaframe = myframe(rdirichlet(N,alpha))

> addmyopts(ggtern(thetaframe,aes(theta1,theta2,theta3)))
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We see that the points are indeed uniformly spread across the
triangle. Next let’s check the Haldane limit, which corresponds
to the improper distribution p(θ1, θ2, θ3) ∝ θ−11 θ−12 θ−13 . of course
we can’t literally take the parameters to zero, but we can make
them small:

> alpha = c(0.1,0.1,0.1)
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> thetaframe = myframe(rdirichlet(N,alpha))

> addmyopts(ggtern(thetaframe,aes(theta1,theta2,theta3)))
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We see that the points tend to cluster on the edges and even
more in the corners, which makes sense since the distribution
function becomes large if as many θj as possible are close to
zero.

Now let’s suppose we’ve seen some data with ≈ 20% in the
first category, ≈ 50% in the second category, and ≈ 30% in
the third category. First we assume n = 1000, and see that we
have a distribution peaked strongly at θ1 = 0.20, θ2 = 0.50, and
θ3 = 0.30:

> alpha = c(200,500,300)

> thetaframe = myframe(rdirichlet(N,alpha))

> addmyopts(ggtern(thetaframe,aes(theta1,theta2,theta3)))
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We can take n = 100, and we’ll find the Dirichlet distribution is
a little more spread out:

> alpha = c(20,50,30)

> thetaframe = myframe(rdirichlet(N,alpha))

> addmyopts(ggtern(thetaframe,aes(theta1,theta2,theta3)))
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Finally, let n = 10, and we see that most of the allowed com-
binations of θj are still plausible. (Note that this is implicitly
assuming we’re starting with the Haldane prior. If we used the
uniform prior, we’d get a Dirichlet distribution with α = (3, 6, 4)
rather than (2, 5, 3). This is a significant difference when n = 10,
but not so much when n = 100 or n = 1000.

> alpha = c(2,5,3)

> thetaframe = myframe(rdirichlet(N,alpha))

> addmyopts(ggtern(thetaframe,aes(theta1,theta2,theta3)))

>
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3.4.3 Reparametrization

The parameters of a multinomial distribution when J = 3 pro-
vide a good illustration of how to handle a change of variables or
reparametrization involving more than one parameter. Suppose
we decide to consider not the probability parameters θ1, θ2, θ3,
but φ1, φ2, φ3, where

• φ3 = 1−θ3 is the probability that a given trial will not have
result #3.

• φ1 = θ1
1−θ3 is the conditional probability that a given trial

will have result #1, if it is known not to have result #3.

• φ2 = θ2
1−θ3 is the conditional probability that a given trial

will have result #2, if it is known not to have result #3.

The question is, how do we go from a probability distribution
like p(θ1, θ2, θ3|Iα) to p(φ1, φ2, φ3|Iα). It’s not to hard to see that
the conditions 0 < θ1, θ2, θ3 < 1, θ1 + θ2 + θ3 = 1 correspond to

39



0 < φ1, φ2, φ3 < 1, φ1 + φ2 = 1. To transform the probability
density, we note that we need to satisfy

p(θ1, θ2, θ3|Iα) dθ1 dθ2 dθ3 = p(φ1, φ2, φ3|Iα) dφ1 dφ2 dφ3 (3.51)

where dθ1 dθ2 dθ3 can be thought of as the measure for a triple
integral. We recall the result from multivariable calculus that

dθ1 dθ2 dθ3 =

∣∣∣∣det

{
∂θj
∂φi

}∣∣∣∣ dφ1 dφ2 dφ3 (3.52)

where det
{
∂θj
∂φi

}
is known as the Jacobian determinant. To eval-

uate it, we need the inverse transformation

θ1 = φ1φ3 (3.53a)

θ2 = φ2φ3 (3.53b)

θ3 = 1− φ3 (3.53c)

which makes the Jacobian matrix{
∂θj
∂φi

}
=


∂θ1
∂φ1

∂θ1
∂φ2

∂θ1
∂φ3

∂θ2
∂φ1

∂θ2
∂φ2

∂θ2
∂φ3

∂θ3
∂φ1

∂θ3
∂φ2

∂θ3
∂φ3

 =

φ3 0 φ1

0 φ3 φ2

0 0 −1

 (3.54)

and its determinant det
{
∂θj
∂φi

}
= −φ2

3. This means

dθ1 dθ2 dθ3 = φ2
3dφ1 dφ2 dφ3 (3.55)

and

p(φ1, φ2, φ3|Iα) = φ2
3p(θ1, θ2, θ3|Iα)

= φ2
3[φ1φ3]

α1−1[φ2φ3]
α2−1(1− φ3)

α3−1

= φα1−1
1 φα2−1

2 φα1+α2
3 (1− φ3)

α3−1;

0 < φ1, φ2, φ3 < 1, φ1 + φ2 = 1 (3.56)

So we see that the Dirichlet distribution on θ1, θ2, θ3 corresponds
to independent distributions for (φ1, φ2) and φ3, the former being
Dirichlet with parameters α1 and α2 and the latter being beta
with parameters α1 + α2 + 1 and α3.

Tuesday 21 February 2017

3.5 Multivariate Gaussian

A Linear Algebra: Reminders and

Notation

If A is an m× n matrix:

A =


A11 A12 · · · A1n

A21 A22 · · · A2n
...

...
. . .

...
Am1 Am2 · · · Amn

 (A.1)

and B is an n× p matrix,

B =


B11 B12 · · · B1p

B21 B22 · · · B2p
...

...
. . .

...
Bn1 Bn2 · · · Bnp

 (A.2)

then their product C = AB is an m × p matrix as shown in
Figure 2 so that Cik =

∑n
j=1AijBjk.

If A is an m × n matrix, B = AT is an n × m matrix with
elements Bij = Aji:
B11 B12 · · · B1m

B21 B22 · · · B2m
...

...
. . .

...
Bn1 Bn2 · · · Bnm

 = B = AT =


A11 A21 · · · Am1

A12 A22 · · · Am2
...

...
. . .

...
A1n A2n · · · Amn


(A.4)

If v is an n-element column vector (which is an n× 1 matrix)
and A is an m × n matrix, w = Av is an m-element column
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C = AB =


C11 C12 · · · C1p

C21 C22 · · · C2p
...

...
. . .

...
Cm1 Cm2 · · · Cmp

 =


A11 A12 · · · A1n

A21 A22 · · · A2n
...

...
. . .

...
Am1 Am2 · · · Amn



B11 B12 · · · B1p

B21 B22 · · · B2p
...

...
. . .

...
Bn1 Bn2 · · · Bnp



=


A11B11 + A12B21 + · · ·+ A1nBn1 A11B12 + A12B22 + · · ·+ A1nBn2 · · · A11B1p + A12B2p + · · ·+ A1nBnp

A21B11 + A22B21 + · · ·+ A2nBn1 A21B12 + A22B22 + · · ·+ A2nBn2 · · · A21B1p + A22B2p + · · ·+ A2nBnp
...

...
. . .

...
Am1B11 + Am2B21 + · · ·+ AmnBn1 Am1B12 + Am2B22 + · · ·+ AmnBn2 · · · Am1B1p + Am2B2p + · · ·+ AmnBnp


(A.3)

Figure 2: Expansion of the product C = AB to show Cik =
∑n

j=1AijBjk.

vector (i.e., an m× 1 matrix):
w1

w2
...
wm

 = w = Av =


A11 A12 · · · A1n

A21 A22 · · · A2n
...

...
. . .

...
Am1 Am2 · · · Amn



v1
v2
...
vn



=


A11v1 + A12v2 + · · ·+ A1nvn
A21v1 + A22v2 + · · ·+ A2nvn

...
Am1v1 + Am2v2 + · · ·+ Amnvn


(A.5)

so that wi =
∑n

j=1Aijvj.

If u is an n-element column vector, then uT is an n-element
row vector (a 1× n matrix):

uT =
(
u1 u2 · · · un

)
(A.6)

If u and v are n-element column vectors, uTv is a number,

known as the inner product :

uTv =
(
u1 u2 · · · un

)

v1
v2
...
vn


= u1v1 + u2v2 + · · ·+ unvn =

n∑
i=1

uivi

(A.7)

If v is an m-element column vector, and w is an n-element
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column vector, A = vwT is an m× n matrix
A11 A12 · · · A1n

A21 A22 · · · A2n
...

...
. . .

...
Am1 Am2 · · · Amn

 = A = vwT

=


v1
v2
...
vm

(w1 w2 · · · wm
)

=


v1w1 v1w2 · · · v1wn
v2w1 v2w2 · · · v2wn

...
...

. . .
...

vmw1 vmw2 · · · vmwn


(A.8)

so that Aij = viwj.
If M and N are n× n matrices, the determinant det(MN) =

det(M) det(N).
If M is an n×n matrix (known as a square matrix), the inverse

matrix M−1 is defined by M−1M = 1n×n = MM−1 where 1n×n
is the identity matrix

1n×n =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 (A.9)

If M−1 exists, we say M is invertable.
If M is a real, symmetric n × n matrix, so that MT = M,

i.e., Mji = Mij, there is a set of n orthonormal eigenvectors
{v1,v2, . . . ,vn} with real eigenvalues {λ1, λ2, . . . , λn}, so that
Mvi = λivi. Orthonormal means

vT
i vj = δij =

{
0 i 6= j

1 i = j
(A.10)

where we have introduced the Kronecker delta symbol δij. The
eigenvalue decomposition means

M =
n∑
i=1

λiviv
T
i (A.11)

The determinant is det(M) =
∏n

i=1 λi. If none of the eigenvalues
{λi} are zero, M is invertable, and the inverse matrix is

M−1 =
n∑
i=1

1

λi
viv

T
i (A.12)

If all of the eigenvalues {λi} are positive, we say M is positive
definite. If none of the eigenvalues {λi} are negative, we say M
is positive semi-definite. Note that these conditions are equiv-
alent to the more common definition: M is positive definite if
vTMv > 0 for any non-zero n-element column vector v and
positive semi-definite if vTMv ≥ 0 for any n-element column
vector v.
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