
STAT 489-01: Bayesian Methods of Data Analysis

Problem Set 5

Assigned 2017 March 2
Due 2017 March 9

Show your work on all problems! Be sure to give credit to any collaborators, or
outside sources used in solving the problems. Note that if using an outside source to do
a calculation, you should use it as a reference for the method, and actually carry out the
calculation yourself; it’s not sufficient to quote the results of a calculation contained in an
outside source.

1 Unfinished Business

Consider the probability distribution from problems 2 and 3 of the exam, which was a
Dirichlet(y1,y2,y3) distribution for φ1, φ2 and 1 − φ1 − φ2, as well as the Gaussian approxi-
mation in the parameters θj = lnφj − ln(1−φ1−φ2), j = 1, 2. (Refer to the exam solutions
for the relevant formulas.)

(a) Write a program or script which, given values of y1, y2, and y3, generates samples from
the exact Dirichlet distribution and the Gaussian approximation (this can be done
using the rdirichlet() function from the gtools R library and either the rmvnorm()

function from the mvtnorm library or the mvrnorm() function from the MASS library),
and uses those samples to produce

(i) Ternary plots of each of the two samples in φ1, φ2 and 1− φ1 − φ2 space

(ii) Scatter plots of each of the two samples in θ1, θ2 space

(iii) Estimates, from each of the two samples, of E(θ1|y, I), E(θ2|y, I) V (θ1|y, I),
V (θ2|y, I) and Cov(θ1, θ2|y, I).

(b) Apply your script when (y1, y2, y3) = (51, 31, 21).

(c) Apply your script when (y1, y2, y3) = (6, 4, 3).

(d) Apply your script when (y1, y2, y3) = (4.5, 2.5, 0.5).

2 Jaynesian Evidence

Jaynes defines the “evidence” for a hypothesis H given a state of knowledge X (which might
be prior information I, so X = I, or prior information along with some data D, in which
case X = D, I as

e(H|X) = 10 log10

Pr(H|X)

Pr(H|X)
= 10 log10

Pr(H|X)

1− Pr(H|X)
(2.1)

where H is the logical negation of H. Since this is something different from what is usually
called “evidence”, we will refer to it as the “Jaynesian evidence”, and quote it in units
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of decibels (dB). One can use Bayes’s theorem to show that if you add new data D, the
Jaynesian evidence is modified by an additive term:

e(H|D,X) = e(H|X) + 10 log10

Pr(D|H,X)

Pr(D|H,X)
(2.2)

(a) Suppose we have a bag containing three four-sided dice, two with one red face and
three white faces, and one with two red faces and two white faces. I draw a die out
but don’t show it to you. Let H1 and H2 be the hypotheses that the die has one and
two red faces, respectively. Show that the approximate Jaynesian evidences for these
hypotheses are e(H1|I) ≈ +3 dB and e(H2|I) ≈ −3 dB.

(b) Suppose I toss the die and report to you the color of the bottom face. Let R1 repre-
sent a result of “red” on this first toss and W1 represent a result of “white”. Calcu-
late Pr(R1|H1, I), Pr(R1|H2, I), Pr(R1|H1, I), Pr(R1|H2, I), e(H1|R1, I)−e(H1|I), and
e(H2|R1, I)−e(H2|I). Repeat the calculation for W1 and obtain e(H1|W1, I)−e(H1|I),
and e(H2|W1, I)− e(H2|I).

(c) Let Dn,r represent some series of n tosses containing r reds, and let Rn+1 or Wn+1

represent a result of red or white, respectively, on the n + 1st toss. Show that
Pr(Rn+1|Dn.r, Hj, I) = Pr(Rn+1|Hj, I), Pr(Rn+1|Dn.r, Hj, I) = Pr(Rn+1|Hj, I), j =
1, 2, and therefore that e(Hj|Rn+1, Dn,r, I) − e(Hj|Dn,r, I) = e(Hj|R1, I) − e(Hj|I),
i.e., the same exchange of evidence between the competing hypotheses occurs with
each observed red toss. (And likewise for white.)

(d) Now suppose we allow for a thousand-to-one chance that we were actually misinformed
about the contents of the bag, and I somehow drew a die with three red faces. Calling
this hypothesis H3, we have e(H3|I) = −30 dB. (In principle the prior Jaynesian
evidences for H1 and H2 should go down slightly, but it’s a negligible difference which
we can ignore to this level of approximation.) Show that while Pr(Rn+1|Dn.r, Hj, I) =
Pr(Rn+1|Hj, I) as before, now with j = 1, 2, 3, Pr(Rn+1|Dn.r, Hj, I) 6= Pr(Rn+1|Hj, I).
Write Pr(Rn+1|Dn.r, H1, I) in a form depending on Pr(H2|Dn.r, I) and Pr(H3|Dn.r, I),
and similarly for Pr(Rn+1|Dn.r, H2, I) and Pr(Rn+1|Dn.r, H3, I).

(e) Consider the case where Pr(H2|Dn.r, I) � Pr(H3|Dn.r, I); what is the approximate
change in evidence e(H1|Rn+1, Dn.r, I)− e(H1|Dn.r, I) associated with observing a red
toss? What about when Pr(H2|Dn.r, I) � Pr(H3|Dn.r, I)? What about for a white
toss in each case?

(f) Consider the corresponding limiting cases to find approximate evidence changes for H2

and H3 resulding from a red toss, and from a white toss.

(g) Download the data http://ccrg.rit.edu/~whelan/courses/2017_1sp_STAT_489/

data/ps05_prob2.dat

which represent the result of a series of tosses, 1 representing red and 0 representing
white. Plot the evidences e(Hj|Dn,r, I), j = 1, 2, 3 (where r is the number of reds in
the first n tosses) for the first n results versus n from 0 to 60. (It is probably easier
just to calculate e(Hj|Dn,r, I) all at once than to try to calculate each incremental
adjustment along the way.)
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3 Bayes Factor and Occam Factors

Suppose we have collected data y1, . . . , yn and are trying to evaluate two models: M0 says the
data are a sample from aN(0, σ2) distribution, andM1 says they are a sample from aN(θ, σ2)
distribution, where σ is a known quantity and the same for both models. Suppose that M1

assigns a Gaussian prior p(θ|M1, I) = (2πσ2
θ)

−1/2e−θ
2/(2σ2

θ) to the value of the parameter θ.

(a) Construct the “evidence” p(y|M0, I) for model M0 as a function of the data y, using
previous results and simplifying as much as possible.

(b) Construct the sampling distribution p(y|θ,M1, I) for model M1 (which is also the
likelihood function).

(c) Construct the “evidence” p(y|M1, I) for model M1.

(d) Find the maximum-likelihood value θ̂(y) which maximizes p(y|θ,M1, I).

(e) Construct the Bayes factor B10 = p(y|M1, I)/p(y|M0, I) comparing the two models.

(f) Construct the maximized likelihood ratio p(y|θ̂(y),M1, I)/p(y|M0, I), and show that
it is always greater than or equal to one.

(g) Write the Bayes factor B10 as a product of three quantities: i) The maximized likelihood
ratio from the previous part, ii) a constant, equal to the value when y = 0 (this is the
Occam factor), iij) whatever’s left.

(h) Choosing a non-informative prior for model M1 corresponds to taking the limit as
σθ →∞. What happens to each of the three parts of the Bayes factor in that limit?

(i) Suppose σθ = 5σ/
√
n. Plot, as a function of y/

√
σ2/n, the log of the Bayes factor,

along with the log of the three quantities above i) over the range −3 < y/
√
σ2/n < 3,

and ii) over the range −15 < y/
√
σ2/n < 15.

4 Gelman Chapter 6, Exercise 7
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