Computational Methods for Astrophysics: Fourier Transforms

John T. Whelan

(filling in for Joshua Faber)

April 27, 2011

John T. Whelan April 27, 2011 Fourier Transforms 1/3

Fourier Analysis

Outline: Fourier Transforms

- Continuous Fourier Transforms
- Discrete Fourier Transforms
- Sampling and Aliasing
- The Fast Fourier Transform

John T. Whelan April 27, 2011 Fourier Transforms 2/

• Fourier transform $\widetilde{h}(f)$ of time series h(t):

$$\widetilde{h}(f) = \int_{-\infty}^{\infty} h(t) e^{-i2\pi f(t-t_0)} dt \iff h(t) = \int_{-\infty}^{\infty} \widetilde{h}(f) e^{i2\pi f(t-t_0)} df$$

• Alternate conventions:

$$\widetilde{h}(f) = \int_{-\infty}^{\infty} h(t) e^{-i2\pi f(t-t_0)} dt$$

$$h(t) = \int_{-\infty}^{\infty} \widetilde{h}(f) e^{i2\pi f(t-t_0)} df$$

• Fourier transform h(f) of time series h(t):

$$\widetilde{h}(f) = \int_{-\infty}^{\infty} h(t) e^{-i2\pi f(t-t_0)} dt \iff h(t) = \int_{-\infty}^{\infty} \widetilde{h}(f) e^{i2\pi f(t-t_0)} df$$

• Alternate conventions: sign of i,

$$\widetilde{h}(f) = \int_{-\infty}^{\infty} h(t) e^{i2\pi f(t-t_0)} dt$$

$$h(t) = \int_{-\infty}^{\infty} \widetilde{h}(f) e^{-i2\pi f(t-t_0)} df$$

John T. Whelan April 27, 2011 Fourier Transforms 3/

• Fourier transform h(f) of time series h(t):

$$\widetilde{h}(f) = \int_{-\infty}^{\infty} h(t) e^{-i2\pi f(t-t_0)} dt \iff h(t) = \int_{-\infty}^{\infty} \widetilde{h}(f) e^{i2\pi f(t-t_0)} df$$

• Alternate conventions: sign of i, f vs ω ,

$$h_{\omega} = \frac{1}{2\pi} \int_{-\infty}^{\infty} h(t) e^{-i\omega(t-t_0)} dt$$

$$h(t) = \int_{-\infty}^{\infty} h_{\omega} e^{i\omega(t-t_0)} d\omega$$

• Fourier transform h(f) of time series h(t):

$$\widetilde{h}(f) = \int_{-\infty}^{\infty} h(t) e^{-i2\pi f(t-t_0)} dt \iff h(t) = \int_{-\infty}^{\infty} \widetilde{h}(f) e^{i2\pi f(t-t_0)} df$$

• Alternate conventions: sign of i, f vs ω , normalization,

$$h_{\omega} = \int_{-\infty}^{\infty} h(t) e^{-i\omega(t-t_0)} dt$$

$$h(t) = rac{1}{2\pi} \int_{-\infty}^{\infty} h_{\omega} e^{i\omega(t-t_0)} d\omega$$

• Fourier transform h(f) of time series h(t):

$$\widetilde{h}(f) = \int_{-\infty}^{\infty} h(t) e^{-i2\pi f(t-t_0)} dt \iff h(t) = \int_{-\infty}^{\infty} \widetilde{h}(f) e^{i2\pi f(t-t_0)} df$$

• Alternate conventions: sign of i, f vs ω , normalization,

$$h_{\omega} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} h(t) e^{-i\omega(t-t_0)} dt$$

$$h(t) = rac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} h_{\omega} e^{i\omega(t-t_0)} d\omega$$

• Fourier transform h(f) of time series h(t):

$$\widetilde{h}(f) = \int_{-\infty}^{\infty} h(t) e^{-i2\pi f(t-t_0)} dt \iff h(t) = \int_{-\infty}^{\infty} \widetilde{h}(f) e^{i2\pi f(t-t_0)} df$$

• Alternate conventions: sign of i, f vs ω , normalization, time origin

$$\widetilde{h}(f) = \int_{-\infty}^{\infty} h(t) e^{-i2\pi f t} dt$$

$$h(t) = \int_{-\infty}^{\infty} \widetilde{h}(f) e^{i2\pi f t} df$$

John T. Whelan April 27, 2011 Fourier Transforms 3/

• Fourier transform h(f) of time series h(t):

$$\widetilde{h}(f) = \int_{-\infty}^{\infty} h(t) e^{-i2\pi f(t-t_0)} dt \iff h(t) = \int_{-\infty}^{\infty} \widetilde{h}(f) e^{i2\pi f(t-t_0)} df$$

- Alternate conventions: sign of i, f vs ω , normalization, time origin
- If h(t) is real, $\widetilde{h}(-f) = \widetilde{h}^*(f)$
- Convolution theorem:

$$g(t) = \int_{-\infty}^{\infty} A(t - t') h(t') dt' \iff \widetilde{g}(f) = \widetilde{A}(f)\widetilde{h}(f)$$

• Can Fourier transform in space as well as time; e.g.,

$$\widetilde{h}(f_x, f_y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(x, y) e^{i2\pi(f_x x + f_y y)} dx dy$$

John T. Whelan April 27, 2011 Fourier Transforms

A Few Words About Convolution

$$g(t) = \int_{-\infty}^{\infty} A(t - t') h(t') dt'$$

• Can be written in different-looking but equivalent ways, e.g.

$$g(t) = \int_{-\infty}^{\infty} A(\tau) h(t - \tau) d\tau$$

• Because $A(\tau)$ is a function of a time difference, its Fourier transform is always defined w/zero time origin:

$$\widetilde{A}(f) = \int_{-\infty}^{\infty} A(\tau) e^{-i2\pi f \tau} d\tau$$

 Arises naturally in astrophysical science & technology: superposition of impulse responses, point-spread fcn of imaging device, linear transfer function, . . .

John T. Whelan April 27, 2011 Fourier Transforms 4/13

Applications of the Fourier Transform

- Multiply Fourier transforms to calculate convolution
- Differential equations:

$$\frac{d^n}{dt^n}h(t) \Leftrightarrow (i2\pi f)^n \widetilde{h}(f)$$

- Spectral analysis
- Matched/optimal filtering when spectral properties of signal and/or noise are known

Discrete Fourier Transforms

• DFT of *N*-point sequence $\{h_j|j=0,\ldots,N-1\}$:

$$\widehat{h}_k = \sum_{j=0}^{N-1} h_j e^{-i2\pi jk/N} \qquad \Longleftrightarrow \qquad h_j = \frac{1}{N} \sum_{k=0}^{N-1} \widehat{h}_k e^{i2\pi jk/N}$$

Corresponds to CFT of discretized data:

$$h_j = h(t_0 + j \, \delta t) \qquad \Longleftrightarrow \qquad \widehat{h}_k \, \delta t \sim \widetilde{h} \left(\frac{k}{N \, \delta t} \right)$$

- Again, different conventions (mostly $\pm i$ & where to put $\frac{1}{N}$); always wise to check your FT package's documentation
- Note by construction $\widehat{h}_{N+k} = \widehat{h}_k$; means e.g., 8-pt FT packed $\widehat{h}_0 \mid \widehat{h}_1 \mid \widehat{h}_2 \mid \widehat{h}_3 \mid \widehat{h}_{-4} \mid \widehat{h}_{-3} \mid \widehat{h}_{-2} \mid \widehat{h}_{-1}$

Sometimes use fftshift fcn to swap halves of array $\&\ get$

$$\widehat{h}_{-4} \mid \widehat{h}_{-3} \mid \widehat{h}_{-2} \mid \widehat{h}_{-1} \mid \widehat{h}_{0} \mid \widehat{h}_{1} \mid \widehat{h}_{2} \mid \widehat{h}_{3}$$

DFTs of Real and Complex Data

- For complex data, N cmplx data points $\{h_i | i = 0, ..., N-1\}$ \iff N independent complex Fourier components $\{\widehat{h}_{k}|k=0,\ldots,N-1\}\$ or $\{\widehat{h}_{k}|k=-\frac{N}{2},\ldots,\frac{N}{2}-1\}$ h_4 hΩ h_1 h_2 h_3 hъ h₆ h_7 h_0 h_{-4} h_{-3} h_{-2} h_1 h_2 h_3
- For real data, symmetry of FT means $\hat{h}_k = \hat{h}_{-k}^* = \hat{h}_{N-k}^*$ N real data points $\{h_i|i=0,\ldots,N-1\} \iff$
 - 2 real Fourier cmpts \hat{h}_0 & $\hat{h}_{N/2}$

ullet These assume N even; modification for odd N straightforward

John T. Whelan April 27, 2011 Fourier Transforms 7/

• Recall correspondence between continuous & discrete FT:

$$h_{j} = h(t_{0} + j \delta t) \qquad \Longleftrightarrow \qquad \widehat{h}_{k} \delta t \sim \widetilde{h}(f_{k})$$

where

$$f_k = k \, \delta f$$
 $\delta f = \frac{1}{N \, \delta t} \equiv \frac{1}{T}$

John T. Whelan April 27, 2011 Fourier Transforms 8/13

Recall correspondence between continuous & discrete FT:

$$h_{j} = h(t_{0} + j \delta t) \qquad \Longleftrightarrow \qquad \widehat{h}_{k} \delta t \sim \widetilde{h}(f_{k})$$

where

$$f_k = k \, \delta f$$
 $\delta f = \frac{1}{N \, \delta t} \equiv \frac{1}{T}$

• Aside: why not factor $\frac{1}{N} = \delta t \, \delta f \, \& \, \text{define DFT as } \hat{h}_k \equiv \hat{h}_k \, \delta t$

$$\widetilde{\mathbf{h}}_{\mathbf{k}} = \delta t \sum_{j=0}^{N-1} h_j \, \mathrm{e}^{-i2\pi j k/N} \quad \Longleftrightarrow \quad h_j = \delta f \sum_{k=-N/2}^{N/2-1} \widetilde{\mathbf{h}}_{\mathbf{k}} \, \mathrm{e}^{i2\pi j k/N} \quad ?$$

John T. Whelan April 27, 2011 Fourier Transforms 8/13

Recall correspondence between continuous & discrete FT:

$$h_{j} = h(t_{0} + j \delta t) \qquad \Longleftrightarrow \qquad \widehat{h}_{k} \delta t \sim \widetilde{h}(f_{k})$$

where

$$f_k = k \, \delta f$$
 $\delta f = \frac{1}{N \, \delta t} \equiv \frac{1}{T}$

• Aside: why not factor $\frac{1}{N}=\delta t\,\delta f$ & define DFT as $\widetilde{h}_k\equiv \widehat{h}_k\,\delta t$

$$\widetilde{h}_{k} = \delta t \sum_{j=0}^{N-1} h_{j} e^{-i2\pi jk/N} \quad \Longleftrightarrow \quad h_{j} = \delta f \sum_{k=-N/2}^{N/2-1} \widetilde{h}_{k} e^{i2\pi jk/N} \quad ?$$

 $\{\widehat{h}_k\}$ involves only data $\{h_j\}$; $\{\widetilde{h}_k\}$ mixes in additional metadata δt

John T. Whelan April 27, 2011 Fourier Transforms 8/13

Recall correspondence between continuous & discrete FT:

$$h_j = h(t_0 + j \, \delta t) \qquad \Longleftrightarrow \qquad \widehat{h}_k \, \delta t \sim \widetilde{h}(f_k)$$

where

$$f_k = k \, \delta f$$
 $\delta f = \frac{1}{N \, \delta t} \equiv \frac{1}{T}$

- N time points represent duration of $T = N \delta t$
- If freq indices are $-\frac{N}{2} \le k \le \frac{N}{2} 1$ (complex) or $0 \le k \le \frac{N}{2}$ (real), then $|f_k| \le \frac{N \delta f}{2} = \frac{1}{2 \delta t} \equiv f_{\text{Ny}}$.
- The Nyquist frequency $f_{\rm Ny}$ is half the sampling rate $\frac{1}{\delta t}$ & is the largest independent frequency represented in the DFT

John T. Whelan April 27, 2011 Fourier Transforms 8/13

Sampling and Aliasing

• $\hat{h}_{N+k} = \hat{h}_k$, but we said $\hat{h}_k \, \delta t \sim \hat{h}(f_k)$ and in general $h(f_{N+k}) \neq h(f_k)$. Actually

$$\widehat{h}_{k} \delta t \approx \cdots + \widetilde{h}(f_{-N+k}) + \widetilde{h}(f_{k}) + \widetilde{h}(f_{N+k}) + \widetilde{h}(f_{2N+k}) + \cdots$$

- If sampled time series had Fourier cmpts w/ $|f| > f_{N/2} = f_{Ny}$, those will be aliased with data in the range $-f_{Nv} \le f \le f_{Nv}$
- Generally low-pass filter time series to discard $|f| > f_{Nv} = \frac{1}{2 kt}$ content before sampling at rate $\frac{1}{kt}$
- Alternately, if data already band-limited (h(f) = 0 for |f| > B)avoid aliasing by choosing δt so $f_{Nv} > B$ i.e., $\frac{1}{\delta t} > 2B$ Confusingly, 2B is sometimes called the "Nyquist rate"

Illustration of Aliasing

John T. Whelan April 27, 2011 Fourier Transforms 10/2

Illustration of Aliasing

John T. Whelan April 27, 2011 Fourier Transforms 10/13

Illustration of Aliasing

John T. Whelan April 27, 2011 Fourier Transforms 10/2

The Fast Fourier Transform

Naïve implementation of discrete FT as

$$\widehat{h}_k = \sum_{j=0}^{N-1} \left(e^{-i2\pi/N} \right)^{kj} h_j$$

would require $\mathcal{O}(N^2)$ ops & not be any faster than convolution

$$g_j = \sum_{m=0}^{N-1} A_{j-m} h_m$$

• Fast Fourier Transform (FFT) algorithms [Tukey & Cooley 1965] cut that to $\mathcal{O}(N \log N)$ by writing

$$N$$
-pt FT \equiv two $N/2$ -pt FTs \equiv four $N/4$ -pt FTs $\equiv \cdots$

- Speedup is greatest for N = power of 2, but products of small prime factors are generally good
- Popular/fast GPLed implementation is FFTW

John T. Whelan April 27, 2011 Fourier Transforms 11/13

Exercise

• For N = 16, generate the discrete time series

$$h_j = \cos \frac{3\pi(j-2)}{8}$$

- ullet Use an FFT routine to transform it & examine resulting \widehat{h}_k
- ullet Apply an inverse FFT routine to \widetilde{h}_k & compare results to h_j
- Use the angle sum formula to write h_j as a linear combination of $\cos\frac{3\pi j}{8}=\frac{e^{i3\pi j/8}+e^{-i3\pi j/8}}{2}$ and $\sin\frac{3\pi j}{8}=\frac{e^{i3\pi j/8}-e^{-i3\pi j/8}}{2i}$ and therefore as a linear combination of $e^{\pm i3\pi j/8}$ and compare the coëfficients to the components of the discrete Fourier transform.

John T. Whelan April 27, 2011 Fourier Transforms 12/13

Grant Tremblay's PhD Defense

Time 11:30

Location Carlson Auditorium, 76-1125

Title "Feedback-Regulated Star Formation in Cool Core Clusters of Galaxies"

John T. Whelan April 27, 2011 Fourier Transforms 13/13