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1 Methods of Inference

Our studies of probability theory have primarily shown us how
to predict the outcome of experiments given some model and/or
set of parameters, to calculate P(D|H, I) where D represents the
data, H the hypothesis (possibly including parameter values)
and I represents any other background information. The goal
of statistical inference is to take the outcome of an experiment,
and say something about the validity of one or more hypotheses.

From the Bayesian point of view, this is as simple as using
Bayes’s Theorem to construct

P(H|D, I) =
P(D|H, I) P(H|I)

P(D|I)
(1.1)

In the frequentist approach, we’re not allowed to assign proba-
bilities to hypotheses, so instead we have to use P(D|H, I) to say
something about the hypothesis H once we know the value of D.
In practice, this often involves dividing up the space of possible
values of D into a region D which is in some sense “consistent”
with H, i.e., likely given H, so that

∑
D∈D P(D|H, I) is above

some threshold. But it’s a bit arbitrary to choose such regions.
After all, even if a coin is fair, the exact sequence HTTTTH-
HTHTHTT is very unlikely (one in 213), but it’s somehow more
consistent with a fair coin than a string of 12 heads and a tail

would be. So we often find ourselves constructing a statistic, a
single function of the data which we can use for a simple thresh-
old. So for example, to check if a coin is fair, given that we
flipped k heads in n tries, we could take (k − n/2)2. If this is
small, it the number of heads is close to what we’d expect from
a fair coin. This is a goodness-of-fit statistic, and the chi-square
statistics we’ve constructed so far are examples.

Another example of a statistic would be if we want to estimate
the probability parameter associated with a binomial distribu-
tion. Given k successes in n trials, we’d expect k/n to be a
sensible estimate of this parameter. This discards any informa-
tion about the order of successes and failures, and just retains
that one number.

1.1 Statistics Constructed from Data: Two
Approaches

To see how a preferred statistic might arise, let’s consider the
case where we have n data points {xi}, drawn from indepen-
dent distributions with the same unknown mean µ and different
unknown variances {σ2

i }. We are thus basically making n inde-
pendent measurements of some unknown quantity µ, each with
its own error of standard deviation σi. How can we use the
values {xi} to say something about µ?

1.1.1 Bayesian Approach: Posterior pdf

The Bayesian answer to that question is straightforward: con-
struct the posterior pdf

f(µ|{xi}, {σi}, I) =
f({xi}|µ, {σi}, I)f(µ|{σi}, I)

f({xi}|{σi}, I)
(1.2)

(From here on, we’ll suppress the implicit conditional depen-
dence on {σi} and I in the interest of compactness of notation.)
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To do this construction, we need to know the form of the joint
pdf

f({xi}|µ) =
n∏
i=1

f(xi|µ) (1.3)

so let’s add the additional assumption that the errors are Gaus-
sian, so

f(xi|µ) =
1

σi
√

2π
exp

(
−(xi − µ)2

2σ2
i

)
(1.4)

and

f({xi}|µ) =
n∏
i=1

1

σi
√

2π
exp

(
−(xi − µ)2

2σ2
i

)

=
1

(2π)n/2
∏n

i=1 σi
exp

(
−1

2

n∑
i=1

(xi − µ)2

σ2
i

) (1.5)

Although this is a pdf for the {xi}, when we substitute this
likelihood function into (1.2), we will end up with a pdf for µ,
so we’re most interested in the µ dependence, which we can see
is Gaussian, since the sum in the exponential is quadratic in µ.
We can write this in a transparent way by completing the square
and writing

χ2({xi};µ) =
n∑
i=1

(xi − µ)2

σ2
i

=
[µ− µ0({xi})]2

σ2
µ({xi})

+χ2
0({xi}) (1.6)

and solving for µ0({xi}), σ2
µ({xi}), and χ2

0({xi}) (the names of
which have been deliberately somewhat provocatively chosen).
Expanding both sides gives us

µ2

n∑
i=1

1

σ2
i

− 2µ
n∑
i=1

xi
σ2
i

+
n∑
i=1

x2
i

σ2
i

=
µ2

σ2
µ({xi})

− 2µ
µ0({xi})
σ2
µ({xi})

+
[µ0({xi})]2

σ2
µ({xi})

+ χ2
0({xi}) (1.7)

so we can solve for

1

σ2
µ({xi})

=
n∑
i=1

1

σ2
i

(1.8)

(which we see is actually independent of the data {xi} so we will
just write σµ from now on)

µ0({xi}) = σ2
µ({xi})

n∑
i=1

xi
σ2
i

=

∑n
i=1 σ

−2
i xi∑n

i=1 σ
−2
i

(1.9)

and

χ2
0({xi}) =

n∑
i=1

x2
i

σ2
i

− [µ0({xi})]2

σ2
µ({xi})

(1.10)

While χ2
0({xi}) is useful for some applications to come later in

the semester, it will turn out to be irrelevant right now, so we
don’t bother to work out the explicit form.

We can rewrite the likelihood function to stress its µ depen-
dence:

f({xi}|µ) =
e−χ

2
0({xi})/2

(2π)n/2
∏n

i=1 σi
exp

(
− [µ− µ0({xi})]2

2σ2
µ

)
(1.11)

Because the posterior pdf f(µ|{xi}) is guaranteed to be normal-
ized: ∫ ∞

−∞
f(µ|{xi}) dµ =

∫∞
−∞ f({xi}|µ) f(µ) dµ

f({xi})
= 1 (1.12)

we can write

f(µ|{xi}) ∝ exp

(
− [µ− µ0({xi})]2

2σ2
µ

)
f(µ) (1.13)

3



where the {xi}-dependent proportionality constant can be
worked out from the normalization. Explicitly,

f(µ|{xi}) = C({xi}) exp

(
− [µ− µ0({xi})]2

2σ2
µ

)
f(µ) (1.14)

where

C({xi}) =
e−χ

2
0({xi})/2

f({xi})(2π)n/2
∏n

i=1 σi

=

(∫ ∞
−∞

exp

(
− [µ− µ0({xi})]2

2σ2
µ

)
f(µ) dµ

)−1 (1.15)

In particular, if the prior pdf f(µ) is constant1, the posterior is

f(µ|{xi}) =
1

σ2
µ

√
2π

exp

(
− [µ− µ0({xi})]2

2σ2
µ

)
(1.16)

In any event, no matter what the prior on µ, the essential infor-
mation about the outcome of the experiment is encoded in the
weighted average µ0({xi}).

1.1.2 Frequentist Approach: Optimal Estimator

Now let’s shift to the frequentist perspective, where we have
n random variables {Xi} with unknown mean E [Xi] = µ and
known variances Cov(Xi, Xj) = δij Var(Xi) = δijσ

2
i . We want

to say something about µ, and the simplest thing we can do is

1In practice, to have a normalizable prior, we need something like

f(µ) =

{
1

µmax−µmin
µmin < µ < µmax

0 otherwise

but in the limit µmin � µ0−σ and µmax � µ0 +σ we get the simpler result
given here.

try to estimate its value. So we construct a statistic µ̂({Xi}).
This is a random variable, and for any data realization it is our
guess for the value of µ. Since it’s a random variable, it has
an expectation value. We say that µ̂ is an unbiased estimator
of µ if E [µ̂({Xi})] = µ. There are a lot of possible statistics
which satisfy this requirement. For instance, we could just take
X1 and throw away the rest of the data. Or we could take the
sample mean X = 1

n

∑n
i=1Xi. Either one of these is an unbiased

estimator (since they both have expectation value µ), but we’d
expect X to do a better job of estimating µ. On the other hand,
it won’t be the best in all cases; for example, if σ2 is much less
than all the other {σi}, i.e., the second measurement is good
and the others are all lousy, we’d like to pay more attention to
X2 than the other random variables.

We’d like to consider what is the best estimator µ̂ to use. For
simplicity, let’s restrict ourselves to linear combinations of the
random variables, i.e., estimators of the form

µ̂({Xi}) =
n∑
i=1

aiXi (1.17)

the estimator will be unbiased if

E [µ̂({Xi})] =
n∑
i=1

aiµ = µ
n∑
i=1

ai (1.18)

is equal to µ, i.e., if
∑n

i=1 ai = 1. The variance of the estimator
is

Var (µ̂({Xi})) =
n∑
i=1

n∑
j=1

aiaj Cov(Xi, Xj) =
n∑
i=1

a2
iσ

2
i (1.19)

The optimal estimator is the unbiased estimator with the lowest
variance, i.e., it minimizes

∑n
i=1 a

2
iσ

2
i subject to the constraint
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∑n
i=1 ai = 1. We can find this with the method of Lagrange

multipliers, by minimizing

n∑
i=1

a2
iσ

2
i + λ(

n∑
i=1

ai − 1) (1.20)

with respect to {ai} and λ. Taking ∂
∂ai

gives

2aiσ
2
i + λ = 0 (1.21)

so

ai = −λ
2
σ−2
i (1.22)

Taking ∂
∂λ

gives the constraint
∑n

i=1 ai = 1 so

− λ

2

n∑
i=1

σ−2
i = 1 (1.23)

i.e.,

− λ

2
=

1∑n
i=1 σ

−2
i

(1.24)

and

ai =
σ−2
i∑n

j=1 σ
−2
j

(1.25)

which makes the optimal estimator

µ̂opt({Xi}) =

∑n
i=1 σ

−2
i Xi∑n

i=1 σ
−2
i

(1.26)

and its variance

Var(µ̂opt({Xi})) =
n∑
i=1

a2
iσ

2
i =

∑n
i=1 σ

−4
i σ2

i

(
∑n

j=1 σ
−2
j )2

=
1∑n

i=1 σ
−2
i

(1.27)

but we see that this optimal estimator is just the same weighted
average that showed up in the posterior pdf for µ in the Bayesian
approach:

µ̂opt({xi}) = µ0({xi}) (1.28)

and its variance is the width of the posterior on µ in the case
where the prior is uniform and the sampling distribution is Gaus-
sian.

Var(µ̂opt({Xi})) = σ2
µ (1.29)

Wednesday, November 1, 2017

2 Parameter Estimation

Our preceding example considered two related questions about
unknown parameters

• What posterior distribution do we assign to an unknown
parameter in light of observed data, in the Bayesian frame-
work?

• How can we estimate an unknown parameter given observed
data?

In addition to the Bayesian vs frequentist issues, there are also
differences between trying to get a single point estimate of a pa-
rameter, and saying something about the uncertainty associated
with that estimate.

2.1 Maximum likelihood and maximum a
posteriori estimates

2.1.1 Maximum likelihood estimation

As we saw previously, there are many different estimators that
could conceivably be used to try to gain information about an
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unknown parameter θ. One way, in the frequentist picture, to
pick an estimate is the so-called maximum likelihood method,
which chooses the value that maximizes the likelihood function
f({xi}|θ) where {xi} are the observed data.

In the previous example, where the parameter was µ, the like-
lihood function was

f({xi}|µ) =
1

(2π)n/2
∏n

i=1 σi
exp

(
−1

2

n∑
i=1

(xi − µ)2

σ2
i

)

=
e−χ

2
0({xi})/2

(2π)n/2
∏n

i=1 σi
exp

(
− [µ− µ0({xi})]2

2σ2
µ

) (2.1)

where 1
σ2
µ

=
∑n

i=1
1
σ2
i
, µ0({xi}) =

∑n
i=1 σ

−2
i xi∑n

i=1 σ
−2
i

, and χ2
0({xi}) =∑n

i=1
x2i
σ2
i
− [µ0({xi})]2

σ2
µ({xi}) . We can see by inspection that the likelihood

function (which happens to be a Gaussian) is maximized when
µ = µ0({xi}).

As another example, consider a random sample {Xi} of size n
drawn from an exponential distribution with rate parameter θ.
Since each random variable Xi is drawn from the pdf f(xi|θ) =
θeθxi , the likelihood function is

f({xi}|θ) =
n∏
i=1

f(xi|θ) = θne−θ
∑n
i=1 xi (2.2)

It’s actually easiest to find the θ that maximizes the likelihood
by considering the log-likelihood

`(θ) = ln f({xi}|θ) = n ln θ − θ
n∑
i=1

xi (2.3)

whose derivative is

`′(θ) =
n

θ
−

n∑
i=1

xi (2.4)

so the maximum-likelihood rate is

θ̂ =
n∑n
i=1 xi

=
1

x
(2.5)

2.1.2 MAP estimation

Note that in the Bayesian approach we could simply find the
value of θ which maximizes f(θ|{xi}) ∝ f({xi}|θ)f(θ), which
is known as the maximum a posteriori (MAP) estimate. If the
prior f(θ) is uniform, the MAP estimate is the same as the
maximum likelihood estimate. Note, though, that if we do a
change of variables on the parameter, the maximum-likelihood
point won’t change, but the maximum-posterior point will. For
instance, if we parametrize the exponential distribution in terms
of a rate parameter β = θ−1, the likelihood function is

f({xi}|β) = β−ne−
∑n
i=1 xi/β (2.6)

and the derivative of the log-likelihood is

d

dβ
ln f({xi}|β) =

−n
β

+

∑n
i=1 xi
β2

(2.7)

which is zero when

β =

∑n
i=1 xi
n

= θ̂−1 (2.8)

The reason this doesn’t work for the maximum-posterior point
is that f(θ|{xi}) is a density in θ, while f({xi}|θ) is not. On the
one hand,

fX|B(x|β) = fX|Θ(x|β−1) (2.9)

because the condition B = β is the same as the condition Θ =
β−1, but if we transform the pdf,

fB|X(β|x) =
dP

dβ
=

∣∣∣∣ dθdβ
∣∣∣∣ dPdθ = β−2fΘ|X(β−1|x) (2.10)
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(By the same token, the statement “the prior is uniform in the
parameter” depends on what the parameter is. If fΘ(θ) is a
constant, fB(β) = β−2fΘ(β−1) can’t be.

2.1.3 Expansion about the MAP point

Presuming we’ve described the parameter space in a convenient
set of coördinates, we can ask how the posterior f(θ|x) be-
haves in the vicinity of the parameter value which maximizes
it. Consider first the case of a single parameter θ, with poste-
rior f(θ|x). One trick would be to Taylor expand the function
near its maximum, but this could cause trouble if we extrapolate
it too far, since we know f(θ|x) ≥ 0. So instead, we Taylor ex-
pand the logarithm `(θ) = ln f(θ|x). For convenience we’ll call

the MAP point θ̂ and the log-posterior `(θ), respectively, even
though these usually refer to the maximum likelihood point and
the log-likelihood, respectively. The expansion looks like

`(θ) = `(θ̂) + (θ − θ̂)`′(θ̂) +
(θ − θ̂)2

2
`′′(θ̂) + · · · (2.11)

Now, since θ̂ maximizes `(θ), we know `′(θ̂) = 0 and `′′(θ̂) < 0.
If we truncate the expansion at the first non-trivial order, we
have

`(θ) ≈ `(θ̂)− (θ − θ̂)2

2
[−`′′(θ̂)] (2.12)

or

f(θ|x) ≈ f(θ̂|x) exp

(
−(θ − θ̂)2

2
[−`′′(θ̂)]

)
(2.13)

which is a Gaussian with width [−`′′(θ̂)]−1/2.
In the case where there are multiple parameters, θ ≡ {θi|i =

1, . . . ,m}, the Taylor expansion of `(θ) = ln f(θ|x) is

`(θ) ≈ `(θ̂) +
1

2

m∑
i=1

m∑
j=1

∂2`

∂θi∂θj
(θi − θ̂i)(θj − θ̂j) (2.14)

so that

f(θ|x) ≈ f(θ̂|x) exp

(
−1

2
(θ − θ̂)TH(θ − θ̂)

)
(2.15)

where H is the Hessian matrix, which has elements

Hij(x) = −∂
2 ln f(θ|x)

∂θi∂θj

∣∣∣∣
θ=θ̂(x)

(2.16)

The Hessian matrix gives an estimate of uncertainties of the pa-
rameters; H is just the inverse of the variance-covariance matrix
for the approximate multivariate Gaussian posterior:

Cov(θ) = E
[
(θ − θ̂)(θ − θ̂)T

]
≈ H−1 (2.17)

In particular, the width of the marginal pdf for a particular
parameter is

√
Var(θi) = E

[
(θi − θ̂i)2

]
≈
√

[H−1]ii (2.18)

This is one justification for the practice of quoting
√

[H−1]ii as
the one-sigma uncertainty for the parameter θi.

Note that if the Hessian matrix has off-diagonal elements, it’s
important to take the diagonal elements of the inverse Hessian
matrix rather than one over the diagonal elements of the Hessian
matrix, since [

H−1
]
ii
6= 1

Hii

(2.19)

In general (Hii)
−1/2 will be an underestimate of the correct error

([H−1]ii)
1/2

, as you showed in your consideration of the bivariate
Gaussian distribution on the homework.
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2.1.4 The Fisher matrix

The Hessian matrix (2.16) H(x) is closely related to the Fisher
Information Matrix F(θ) of classical statistics, which is defined
as

Fij(θ) = E

[
−∂

2 ln f(X|θ)

∂θi∂θj

]
(2.20)

They differ in that

1. The Fisher matrix is constructed from the likelihood f(x|θ)
rather than the posterior f(θ|x).

2. While the Hessian is a function of the observed data x,
evaluated at the MAP point θ = θ̂(x), the Fisher matrix
is a function of the parameter space point θ, and any x-
dependence in the second derivative is handled via an ex-
pectation value.

These differences are irrelevant, and the Fisher matrix is iden-
tical to the Hessian, if the prior f(θ) is uniform so that the
log-posterior and log-likelihood only differ by a constant, and
the second derivative is independent of both θ and x.

Thursday, November 2, 2017

2.2 Interval estimation

Beyond finding some “most likely” parameter value and describ-
ing the shape of either the likelihood function or the posterior
around that value, an important task in parameter estimation
is to provide an interval that we associate quantitatively with
likely values of the parameter. This can be extended to a region
in a multidimensional parameter space. The biggest difference
between the Bayesian and frequentist versions of these intervals
turns out to be the interpretation.

2.2.1 Bayesian plausible intervals

We start with the Bayesian version, which is considerably more
straightforward. Given a posterior pdf f(θ|x), we can construct
a plausible interval in which we think θ is likely to lie with some
probability 1− α, defined by

P(θ` < θ < θu) =

∫ θu

θ`

f(θ|x) dθ = 1− α (2.21)

So this means the area under the posterior pdf, between θ` and
θu, is 1 − α. This does leave the freedom to choose where the
interval begins. Some convenient choices are

• A lower limit (one-sided plausible interval), so P(θ` < θ) =
1− α.

• An upper limit (one-sided plausible interval), so P(θ <
θu) = 1− α.

• A symmetric two-sided plausible interval, so P(θ < θ`) =
α/2 = P(θu < θ).

• A plausible interval centered on the mode θ̂ of the posterior,
so P(θ̂ − ∆θ

2
< θ < θ̂ + ∆θ

2
) = 1− α.

• The narrowest possible plausible interval, i.e., of all of the
intervals with P(θ` < θ < θu) = 1 − α, pick the one that
minimizes θu−θ`. You can show that a necessary condition
for this is f(θ`|x) = f(θu|x).

2.2.2 Frequentist confidence intervals

In the frequentist picture we can’t assign a probability to the
statement that a particular interval contains or doesn’t contain
an unknown parameter. It either does or it doesn’t. So instead
we can define a procedure to generate an interval such that if
you collect many random data sets and make such an interval
from each, some fraction of those intervals will contain the true
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parameter value. This is known as a (frequentist) confidence
interval. It’s a pair of statistics L = L(X) and U = U(X)
chosen so that the probability that the parameter θ lies between
them is 1− α (e.g., if α = 0.10, it is 90%):2

P(L < θ < U) = 1− α (2.22)

It’s important to note that the probabilities here refer to the
randomness of L and U , and not to the unknown θ. From the
frequentist perspective, we can’t talk about probabilities for dif-
ferent values of θ; it has some specific value, even if it’s unknown.
What’s random is the sample X and the statistics L and U cre-
ated from it.

Given a particular realization x of the sample X, we have a
specific confidence interval between ` = L(x) and u = U(x).
Note that the probabilistic statements do not actually refer to
the properties of a particular confidence interval (`, u) but to
the procedure used to construction of the confidence interval.

One method to construct the confidence interval is to choose
a statistic T = T (X; θ), known as a pivot variable, whose prob-
ability distribution is a known function of the parameters, and
construct an interval using the percentiles of the distribution

P(a < T (X; θ)< b) = 1− α (2.23)

By algebraically solving the inequalities a < T (X; θ) and
T (X; θ)< b for θ, we should be able to write

P(L(X)< θ < U(X)) = 1− α (2.24)

Note that this construction is not unique; different choices for
the pivot variable will give different confidence intervals with
the same confidence.

2We’re implicitly considering a two-sided confidence interval, so we also
have P(θ < L) = α/2 and P(U < θ) = α/2.

2.2.3 Example: Mean of a Normal Distribution

To illustrate the pivot variable method, consider the case where
X is a sample of size n drawn from a N(µ, σ) distribution with
both µ and σ unknown, where we want a confidence interval on
µ. The pivot variable should depend on µ and X but not σ, so

Z =
X − µ
σ/
√
n

(2.25)

will not work, even though we know it obeys as N(0, 1) distribu-
tion (because X obeys a normal distribution with E(X) = µ and
Var(X) = σ/

√
n. Fortunately, we know from Student’s theorem

that

T =
X − µ√
S2/n

(2.26)

obeys a t distribution with n − 1 degrees of freedom. This will
work as a pivot variable, since

S2 =
1

n− 1

n∑
i=1

(Xi −X)2 (2.27)

depends only on the sample, and requires no knowledge of µ or
σ. Having identified a pivot variable which obeys a t distribution
is useful not so much because we know the precise form of the
pdf

fT (t; ν) =
Γ([ν + 1]/2)√
νπΓ(ν/2)

(
1 +

t2

ν

)−[ν+1]/2

(2.28)

but because it’s a standard distribution for which the percentiles
are tabulated in various books or available in R, scipy, etc. The
90th percentile, for example, of a t distribution with ν degrees of
freedom is written t0.1,ν ; in general, the (1−α)×100th percentile
tα,ν is defined by

1− α = P(T ≤ tα,ν) =

∫ tα,ν

−∞
fT (t; ν) dt (2.29)
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or equivalently by ∫ ∞
tα,ν

fT (t; ν) dt = α (2.30)

Since we want a two-sided confidence interval, we actually need
tα/2,ν and t1−α/2,ν . Since the t distribution is symmetric, though,
we can take advantage of the fact that t1−α/2,ν = −tα/2,ν , e.g.,
the 5th percentile is minus the 95th:

Thus, returning to the case of the pivot variable T , which is
t-distributed with n− 1 degrees of freedom,

1− α = P(−tα/2,n−1 < T < tα/2,n−1)

= P

(
−tα/2,n−1 <

X − µ√
S2/n

< tα/2,n−1

)
(2.31)

Doing a bit of algebra, we can see that

X − µ√
S2/n

< tα/2,n−1 (2.32)

is equivalent to

X − tα/2,n−1

√
S2

n
< µ (2.33)

and

− tα/2,n−1 <
X − µ√
S2/n

(2.34)

is equivalent to

µ < X + tα/2,n−1

√
S2

n
(2.35)

so

P

(
X − tα/2,n−1

√
S2

n
< µ <X + tα/2,n−1

√
S2

n

)
= 1− α

(2.36)
which defines a confidence interval for µ.

Tuesday, November 7, 2017

3 Model Selection

3.1 Frequentist hypothesis testing

See Gregory, Chapter 7
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Often want to evaluate hypothesis H in light of observed data
x, or compare hypotheses

In Bayesian picture, can define P(H|x) and evaluate e.g., P(H1)
P(H2)

So far, we’ve considered methods to get a handle on the un-
known parameter(s) θ of a probability distribution f(x; θ) given
that we draw a sample X from that distribution, with joint pdf

fX(x1, x2, . . . , xn; θ) =
n∏
i=1

f(xi; θ) (3.1)

and find a particular realization X = x. Now we want to con-
sider how to use the realization of the sample to distinguish
between two competing hypotheses about what the underlying
distribution f(x) is. In principle the differences could be qual-
itative, but for simplicity we’ll assume that there is one family
f(x; θ) parametrized by θ which lies somewhere in a region Ω
and then take the hypotheses to be:

• H0: the distribution is f(x; θ) where θ ∈ ω0.

• H1: the distribution is f(x; θ) where θ ∈ ω1.

Typically, H0 represents the absence of the effect we’re looking
for, and is known as the null hypothesis, while H1 represents the
presence of the effect, and is known as the alternative hypothesis.

For example, suppose someone claims to have extrasensory
perception, and to be able to use their telepathic powers to de-
termine the suits of cards drawn from a deck. For simplicity,
assume we shuffle the deck after each draw. Then the data {Xi}
are a sample drawn from a Bernoulli distribution, with each Xi

having some probability θ of being correct. The null hypothesis
H0 is that the person does not have ESP, and has a 25% chance
of guessing each suit correctly, so θ = 0.25. The alternative hy-
pothesis H1 is that they can determine the suit more accurately
than by random chance (but perhaps not perfectly), so θ > 0.25.

As another example, suppose that someone claims that when
twins are born, the birth weight of the first twin is on average
greater than that of the second. We could take the data {Xi} to
be the difference between the birth weights of the two twins, and
assume that the weights are normally distributed with unknown
variance. Then the null hypothesis H0 is that f(x) is a normal
distribution with mean µ = 0 and standard deviation σ > 0,
while the alternative hypothesis H1 is that f(x) is a normal
distribution with mean µ > 0 and standard deviation σ > 0.
(In this case there is a vector of parameters θ = (µ, σ).

A hypothesis test is simply a rule for choosing between the
two hypotheses depending on the realization x of the sample X.
Stated most generally, we construct a critical region C which is
a subset of the n-dimensional sample space D. If X ∈ C, we
“reject the null hypothesis H0”, i.e., we favor H1. If X /∈ C, i.e.,
X ∈ Cc we “accept the null hypothesis H0”, i.e., we favor H0

over H1. Now of course, since X is random, there will be some
probability P(X ∈ C; θ) that we’ll reject the null hypothesis,
which depends on the value of θ. If the test were perfect, that
probability would be 0 if H0 were true, i.e., for any θ ∈ ω0, and
1 if H1 were true, i.e., for any θ ∈ ω1, but then we wouldn’t be
doing statistics. So instead there is some chance we will choose
the “wrong” hypothesis, i.e., some probability that, given a value
of θ ∈ ω0 associated with H0, the realization of our data will
cause us to reject H0, and some probability that, given a value
of θ ∈ ω1 associated with H1, the realization of our data will
cause us to accept H0. As a bit of nomenclature,

• If H0 is true and we reject H0, this is called a Type I Error
or a false positive.

• If H1 is true and we reject H0, we have made a correct
decision (true positive).

• If H0 is true and we accept H0, we have made a correct
decision (true negative).

11



• If H1 is true and we accept H0, this is called a Type II Error
or a false negative.

Typically, a false positive is considered worse than a false nega-
tive, so usually we decide how high a false positive probability
we can live with and then try to find the test which gives us the
lowest false negative probability.

Given a critical region C, we’d like to talk about the associated
false positive probability α and false negative probability 1 −
γ, but we have to be a bit careful, since H0 and H1 are in
general composite hypotheses. This means that each of them
corresponds not to a single parameter value θ and thus a single
distribution, but rather to a range of values θ ∈ ω0 or θ ∈ ω1.
So both α and γ may depend on the value of θ. We take the
false alarm probability α to be the worst-case scenario within
the null hypothesis

α = max
θ∈ω0

P(X ∈ C; θ) (3.2)

This is also called the size of the critical region C. Somewhat
confusingly, it’s also referred to as the significance of the test.
This is a bit counter intuitive, since a low value of α means
the probability of a false positive is low, which means a positive
result is more significant than if α were higher. It is the proba-
bility that we’ll falsely reject the null hypothesis H0, maximized
over any parameters within the range associated with H0. On
the other hand, since the alternative hypothesis almost always
has a parameter θ associated with it, we define the probability
of correctly rejecting the null hypothesis (which is one minus the
probability of a false negative) as a function of θ:

γC(θ) = P(X ∈ C; θ), θ ∈ ω1 (3.3)

We explicitly consider this as a function of the critical region C,
since we might want to compare different tests with the same

false alarm probability α (critical regions with the same size α)
to see which is more powerful.

3.2 Example: Binomial Proportion

To give a concrete example, consider the ESP test described
above. We let the would-be psychic predict the suit of n cards,
count the total number of successes Y =

∑n
i=1Xi, and reject the

null hypothesis if Y > k where k is some integer we’ve chosen,
with k > n/4. For both of the hypotheses, Y is a binomial
random variable, so

P(Y > k) =
n∑

i=k+1

(
n

i

)
θi(1− θ)n−i = 1− F (k; θ) (3.4)

where

F (k; θ) =
k∑
i=0

(
n

i

)
θi(1− θ)n−i (3.5)

is the cdf of a binomial distribution b(n, θ). For the null hypoth-
esis θ = 0.25 and for the alternative hypothesis 0.25 < θ < 1.
Thus the false alarm probability is

α = 1− F (k; 0.25) (3.6)

and the power of the test is

γk(θ) = 1− F (k; θ) (3.7)

If we make the threshold k higher, we get a lower false alarm
probability α, but we also get a less powerful test.

As a concrete example, suppose that n = 20, and we set a
threshold of k = 8. We can use scipy, invoked by

ipython --pylab

12



to calculate the false alarm probability

In [1]: from scipy.stats import binom

In [2]: n = 20

In [3]: k = 8

In [4]: alpha = 1 - binom.cdf(k,n,0.25); alpha

Out[4]: 0.04092516770651855

So α ≈ 0.041 = 4.1%. The power γ(θ) depends on the strength
of the ESP effect, but suppose θ = 0.50, that the psychic has a
1 in 2 chance rather than 1 in 4 of picking the right suit. Then
we can calculate the power:

In [5]: gamma_50 = 1 - binom.cdf(k,n,0.50); gamma_50

Out[5]: 0.74827766418457031

so γ(0.50) ≈ 0.748 = 74.8%.

3.2.1 Aside: ROC Curves

We could make the test more powerful by lowering the threshold
k, but then we would also increase the false alarm probability
α. A useful construction is the receiver operating characteristic
curve, or ROC curve for short. Given a value of θ, we plot α
versus γ(θ) for a range of threshold values k. We can do this
with matplotlib as well, using the arange function to generate
an array of integer values for k between 0 and 19:

In [6]: k = arange(20)

In [7]: alpha = 1 - binom.cdf(k,n,0.25)

In [8]: gamma_50 = 1 - binom.cdf(k,n,0.50)

In [9]: plot(alpha,gamma_50,’ks’);

In [10]: xlabel(r’False alarm $\alpha$’);

In [11]: ylabel(r’Power $\gamma(0.50)$’);

In [12]: plot([0,1],[0,1],’k--’);

In [13]: savefig(’roc.eps’);

The plot looks like this:

0.0 0.2 0.4 0.6 0.8 1.0
False alarm α

0.0

0.2

0.4

0.6

0.8

1.0

Po
w

er
 γ
(0
.5
0)

The diagonal line is γ = α; we don’t expect any sensible test to
lie below this line, since it would mean that we were more likely
to reject H0 when it’s true than when H1 is true!

3.3 Example: Mean of a Normal Distribution

Consider the second example, where X is a random sample of
size n from a normal distribution, where the null hypothesis
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H0 is µ = 0 and the alternative hypothesis H1 is µ > 0. For
simplicity, let’s assume that the variance σ2 is actually known.
(If the sample is large enough, we can use the sample variance
s2 as an estimate.) From our work on confidence intervals, we
know that

P

(
X − µ
σ/
√
n
> zα

)
= α (3.8)

So if we define a critical region

C ≡ X

σ/
√
n
> zα (3.9)

this will correspond to a test with false alarm rate α. The power
of the test for a given true value of µ is

γ(µ) = P

(
X

σ/
√
n
> zα

)
= P

(
X − µ
σ/
√
n
> zα −

µ

σ/
√
n

)
= 1− Φ

(
zα −

µ

σ/
√
n

)
= Φ

(
µ

σ/
√
n
− zα

) (3.10)

3.3.1 p-Values

In this example, as in the last one, we actually have a family
of tests, parametrized by a threshold which we could imagine
varying. Given a data realization x, and in particular a sample
mean x, we will reject H0 if x > zασ/

√
n. This means there

will be some values of the false alarm probability α for which we
reject H0, and some for which we do not. One convenient way
to report which tests would indicate a positive result (reject the
null hypothesis) is to quote the α of the most stringent test for
which H0 would be rejected. Put another way, we ask, given a
measurement (in this case x), how likely is it that we would find
a measurement at least this extreme, just by accident, if the null

hypothesis were true. This is known as the p-value, and in this
case it is defined as

p = P(X≥x;µ = 0) = 1−Φ

(
x

σ/
√
n

)
= Φ

(
− x

σ/
√
n

)
(3.11)

A lower p value means that the results were less likely to have
occurred by chance in the absence of a real effect (i.e., if the null
hypothesis H0 were true). Typically if p < 0.05, the result is
considered interesting and worth future study.3

Note that the p value is often misinterpreted. It does not
represent the probability that the null hypothesis is true (we
cannot evaluate such a probability in frequentist inference). A
p value of 0.01 simply means, for the statistic we decided to
measure, if we repeated the test on many systems for which the
null hypothesis was true, we’d get a measurement as extreme,
or more, as the one we got, one percent of the time.

Thursday, November 9, 2017
Review for Second Prelim Exam

Tuesday, November 14, 2017
Second Prelim Exam

Thursday, November 16, 2017

3.4 Odds ratio and Bayes factor

See Gregory, Section 3.5 and Sivia, Chapter 4
One of the problems about using a frequentist test like a chi-

squared test to assess the validity of a model is that you can

3However, if we test for many different effects, or test many different
data sets, and only report the result with the lowest p value, we can greatly
overstate the significance of our results. See http://xkcd.com/882/.
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always make the fit better by adding more parameters to the
model. In the extreme case, if you have as many model param-
eters as data points, you can make the fit perfect. But clearly a
model which is “overtuned” in this way is scientifically unsatis-
fying.

Bayesian statistics offers a natural way to compare models,
which automatically penalizes models that use too many pa-
rameters to fine-tune themselves to match a data set. This is
known as the odds ratio.

Consider Bayes’s theorem in the context of a model M with
parameters θ. Given an observation x, we can construct the
posterior pdf for the parameters θ as follows

f(θ|x,M) =
f(x|θ,M)f(θ|M)

f(x|M)
(3.12)

which is sometimes abbreviated as

(posterior) =
(likelihood)(prior)

(evidence)
(3.13)

So far we’ve just treated the denominator as a normalization
factor

f(x|M) =

∫
dθ f(x|θ,M)f(θ|M) (3.14)

but we will now see how it gets the name “evidence”. Note that
it is the overall probability to get the observed result x given
the model M, marginalizing over the parameters θ.

Now, consider the case where M is one of a number of pos-
sible models, and we’d like to construct a posterior probability
P(M|x) thatM is the correct model. Well, since we have a way
to calculate f(x|M), we can try using Bayes’s theorem:

P(M|x) =
f(x|M) P(M)

f(x)
(3.15)

The right-hand side has a couple of things that are harder to
get a handle on: the prior probability P(M) of M being the
correct model, and the overall pdf f(x) which requires somehow
marginalizing over all possible models. The usual way around
this is to consider two competing models M1 and M2, and to
calculate the ratio of their posteriors, known as the odds ratio

O12 =
P(M1|x)

P(M2|x)
=
f(x|M1) P(M1)

f(x|M2) P(M2)
=

(
f(x|M1)

f(x|M2)

)(
P(M1)

P(M2)

)
=

(
P(M1)

P(M2)

)
B12

(3.16)

So the factor of f(x) has cancelled out, and the odds ratio O12

is the ratio of prior probabilities for each model times something
known as the Bayes factor

B12 =
f(x|M1)

f(x|M2)
(3.17)

which is the ratio of the “evidence” in each of the models. It
represents how our relative confidence in the two probabilities
has changed with the measurement x. If each model has some
parameters, the Bayes factor can be written as

B12 =

∫
dθ1 f(x|θ1,M1) f(θ1|M1)∫
dθ2 f(x|θ2,M2) f(θ2|M2)

(3.18)

To see how the Bayes factor penalizes modes for over-tuning,
consider a simple case where there are two models: M0, which
has no parameters and M1, which has a parameter θ. If we
measure data x, the Bayes factor comparing the two models is

B10 =

∫∞
−∞ dθ f(x|θ,M1) f(θ|M1)

f(x|M0)
(3.19)

15



To get a handle on what the marginalization of the param-
eter θ does, as compared with the maximization done by the
frequentist method, let’s make some simplifying assumptions.
First let’s assume the likelihood f(x|θ,M1), seen as a function
of θ, can be approximated as a Gaussian about the maximum
likelihood value θ̂:

f(x|θ,M1) ≈ f(x|θ̂,M1) e−(θ−θ̂)/2σ2
θ (3.20)

We’ll also assume that this is sharply peaked compared to the
prior f(θ|M1) and therefore we can replace θ in the argument

of the prior with θ̂, and∫ ∞
−∞

dθ f(x|θ,M1) f(θ|M1) ≈ f(x|θ̂,M1) f(θ̂|M1)

∫ ∞
−∞

dθ e−(θ−θ̂)/2σ2
θ

= f(x|θ̂,M1) f(θ̂|M1)σθ
√

2π

(3.21)

We can then approximate the Bayes factor as

B10 =
f(x|θ̂,M1)

f(x|M0)

σθ
√

2π

[f(θ̂|M1)]−1
(3.22)

The first factor is the ratio of the likelihoods between the best-fit
version of modelM1 and the parameter-free modelM0. That’s
basically the end of the story in frequentist model comparison,
and we can see that if M0 is included as a special case of M1,
this ratio will always be greater or equal to one, i.e., the tunable
model will always be able to find a higher likelihood than the
model without that tunable parameter. But in Bayesian model
comparison, there is also the second factor:

σθ
√

2π

[f(θ̂|M1)]−1
“Occam factor” (3.23)

This is called the Occam factor because it implements Occam’s
razor, the principle that, all else being equal, simpler explana-
tions will be favored over more complicated ones. Because the
prior f(θ|M1) is normalized, [f(θ̂|M1)]−1 is a measure of the
width of the prior, i.e., how much parameter space the tunable
model has available to it. In particular, if the prior is uniform
over some range:

f(θ|M1) =

{
1

θmax−θmin
θmin < θ < θmax

0 otherwise
(3.24)

then the Occam factor becomes

σθ
√

2π

θmax − θmin

(3.25)

because we assumed the likelihood function was narrowly peaked
compared to the prior, the Occam factor is always less than one,
and the tunable model must have a large enough increase in
likelihood over the simpler model in order to overcome this.

3.4.1 Caveats About the Bayes Factor

A number of statisticians, even Bayesian ones, are skeptical
about the Bayes factor; e.g., in Chapter Six of Gelman et al
Bayesian Data Analysis, it takes the authors a while to get
around to even talk about the Bayes factor, and by the time they
does they mostly has negative things to say about it. There are
two major shortcomings that come to mind: First, the Bayes
factor only compares the evidences for two models, rather than
considering whether either of them is really appropriate in light
of the data. Second: if one of the models being compared has
one or more continuous parameters, the Bayes factor can de-
pend sensitively on the prior range you assign to the parame-
ter(s), and as a corollary is typically undefined if you try to use
a non-informative prior.
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The first is in some sense a feature rather than a bug. Bayesian
analysis is not designed to ask, in the abstract, how likely the
data are given the model; the data have been observed, and
we want to use them to evaluate the model. But this is only
meaningful in the context of other models which could have
produced the same data. Even classical methods which claim to
check if data are consistent with a model have to make a choice
of test statistic into which to combine the data in order to do
quantitative hypothesis tests. (There is also role for such tests
in Bayesian analysis.) Still, clues that something is not right
with the model can cause us to examine our prior knowledge
more carefully and look for the alternative models which were
considered unlikely enough to neglect and see which of them
might be promoted by the data. So we should definitely not
limit ourselves to a Bayes factor between assumed models, which
would amount to wearing blinders.

The problem with prior ranges is a serious technical limitation.
We saw last time that with a Gaussian likelihood of width H−1/2

and maximum likelihood point θ̂, the Bayes factor between a
model M1 with a tunable parameter θ given a uniform prior from
θmin to θmax and a model M0 with no parameter was (assuming

θmax − θmin � H−1/2 and θmin < θ̂ < θmax)

B10 ≈
p(y|θ̂,M1, I)

p(y|M0, I)

√
2π/H

θmax − θmin

(3.26)

The second ratio is the “Occam factor” penalizing M1 for having
a tunable parameter. But we see that the prior range for that
parameter is part of the Bayes factor, and if we tried to go to
the limit of a non-informative prior by taking θmin → −∞ and
θmax → ∞, the Occam factor, and therefore the Bayes factor,
would go to zero. This is indeed a serious problem, and indicates
that we should be careful about assigning too much meaning to
a Bayes factor of say 10 or so.

There are a couple of saving graces that can come into play,
however. First, we’re assuming the likelihood function is a Gaus-
sian, and in general probability distributions tend to fall off ex-
ponentially once you get far from their peaks. One reasonable
pair of evidence functions would look like (keeping in mind that

θ̂ is a function of the data y)

p(y|M0, I) =

√
H

2π
exp

(
−H

2
θ̂2

)
(3.27a)

p(y|θ,M1, I) =

√
H

2π
exp

(
−H

2
(θ̂ − θ)2

)
(3.27b)

Then the Bayes factor will be

B10 ≈ eHθ̂
2/2 ×

√
2π/H

θmax − θmin

(3.28)

If Hθ̂2 is large, it may not matter much what the prior range
for θ was. One often quotes Bayes factors on a log scale as well,
and the log Bayes factor will be

lnB10 ≈
Hθ̂2

2

√
2π/H

θmax − θmin

(3.29)

We may not know the precise range of reasonable parameter
values for a model, but we will usually know it to a couple of

orders of magnitude. If, for example,
∣∣∣θ̂∣∣∣ is 8/

√
H, the part of

the log Bayes factor coming from the likelihood ratio is 32, which
means the increase in relative plausibility forM1, not considering
the Occam factor, is4 e32 ≈ 8× 1013. The Occam factor (which

4We can see the awkwardness in interpreting the natural log scale, even
though it’s simpler mathmatically. One number to keep in mind is ln 10 =
1/(log10 e) ≈ 2.303). Thirty-two e-foldings is 32/2.303 ≈ 13.9 orders of
magnitude or 139 dB.

17



is more or less the ratio of the widths of the likelihood and the
prior) is almost certainly nowhere near 10−13, and we can say
this with confidence even if we don’t know the reasonable prior
range to better than one or two orders of magnitude.

The other reason why an undefined scale for the Bayes factor
may not be a big deal is that we don’t always need to look at
the numerical value of the Bayes factor itself. We can also use
it as a statistic in decision theory, for example preferring H1 if
B12 > c for some threshold k, and H2 if B12 < k. (It is the
Bayesian analogue of the likelihood ratio statistic specified by
the Neyman-Pearson lemma.) But typically we’ll choose k to
obtain some specified value of the efficiency P(B12 > c|H1, I)
or the false alarm probability P(B12 > c|H2, I), and in prac-
tice the threshold k can be tied to the prior parameter range
in a way that makes things like efficiency as a function of false
alarm probability remain constant in the limit of a noninforma-
tive prior.

3.4.2 The Neyman-Pearson Lemma

There is a theorem, usually known as the Neyman-Pearson
lemma, that shows how the most powerful test to of one point
hypothesis H0 against another H1 can be constructed from the
likelihood ratio

Λ(x) =
fX(x|H0)

fX(x|H1)
=
L(θ0; x)

L(θ1; x)
(3.30)

We define C so that x ∈ C if and only if Λ(x) ≤ k where k is
defined by

P (Λ(X)≤ k|H0) =

∫
C

fX(x|H0) dnx = α (3.31)

which ensures that the critical region C is of size α. I.e., we
reject H0 if and only if Λ(x) ≤ k.

The Neyman-Pearson lemma states that the power of this test

γ = P (Λ(X)≤ k|H1) =

∫
C

fX(x|H1) dnx (3.32)

is greater than or equal to the power of any other test with the
same significance. I.e., if A is some other critical region with
size α, so that ∫

A

fX(x|H0) dnx = α (3.33)

the Neyman-Pearson lemma says that

γ(C) =

∫
C

fX(x|H1) dnx ≥
∫
A

fX(x|H1) dnx (3.34)

The demonstration of the Neyman-Pearson lemma involves
breaking up the regions C and A in terms of their overlap C∩A.
Evidentally, we can write

C = (C ∩ Ac) ∪ (C ∩ A) (3.35a)

A = (Cc ∩ A) ∪ (C ∩ A) (3.35b)

The contribution to both α and γ from C ∩A cancel out of any
comparison between C and A. So the Neyman-Pearson lemma
is equivalent to the condition that

γ(C)−
∫

C∩A

fX(x|H1) dnx

=

∫
C∩Ac

fX(x|H1) dnx ≥
∫

Cc∩A

fX(x|H1) dnx (3.36)

If we can prove that, we’ve proved the lemma
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Now, by definition

fX(x|H0)

fX(x|H1)
≤ k for x ∈ C (3.37)

so ∫
C∩Ac

fX(x|H1) dnx ≥ 1

k

∫
C∩Ac

fX(x|H0) dnx (3.38)

while
fX(x|H0)

fX(x|H1)
≥ k for x ∈ Cc (3.39)

so ∫
Cc∩A

fX(x|H1) dnx ≤ 1

k

∫
Cc∩A

fX(x|H0) dnx (3.40)

But since the tests defined by C and A both have the same sig-
nificance α, the integrals of fX(x|H0) over the non-overlapping
regions must be the same:

α−
∫

C∩A

fX(x|H0) dnx

=

∫
C∩Ac

fX(x|H0) dnx =

∫
Cc∩A

fX(x|H0) dnx (3.41)

so the right-hand sides of (3.40) and (3.38) must be equal, which
means ∫

C∩Ac

fX(x|H1) dnx ≥
∫

Cc∩A

fX(x|H1) dnx (3.42)

which, as we’ve argued above, means that the power of the like-
lihood ratio test defined by C is greater than or equal to that
defined by A.

3.4.3 Composite Hypothesis Testing with Priors

Consider now a slightly different situation. Suppose that the
null hypothesis H0 is a point hypothesis, but the alternative
hypothesisH1 is a composite hypothesis which allows for a range
of values of the model parameter(s) θ, but comes with a prior
distribution fΘ(θ|H1) on those parameters. (We include the
possibility of a p-dimensional parameter space, but it may also
be that p = 1.) If we define a test which rejects H0 when

fX(x|H0)

fX(x|H1)
=

L(θ0; x)∫
L(θ; x) fΘ(θ|H1) dpθ

≤ k (3.43)

the Neyman-Pearson lemma tells us this is the most powerful
test of H0 versus H1. This is “most powerful” in the sense of
maximizing the power function

γ(H1) = P (X ∈ C|H1) =

∫
C

fX(x|H1) dnx

=

∫
C

∫
L(θ; x) fΘ(θ|H1) dpθ dnx =

∫
γ(θ) fΘ(θ|H1) dpθ

(3.44)

A few points to note:

• The test statistic in (3.43) is just the Bayes factor which
we’ve already motivated using Bayes’s theorem in the form

P (Hi|x) =
fX(x|Hi)P (Hi)

fX(x)
(3.45)

to write
P (H0|x)

P (H1|x)
=
fX(x|H0)

fX(x|H1)

P (H0)

P (H1)
(3.46)

• If there is a uniformly most powerful test which covers any
θ in the support of fΘ(θ|H1), this will also be the most
powerful test of H0 against H1 for any prior distribution.
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• A possible objection is that the frequentist hypothesis test-
ing formalism only applies to the outcomes of repeated
experiments, and isn’t supposed to know about any prior
distribution. Searle http://arxiv.org/abs/0804.1161 applies
this to the outcome of a Monte Carlo experiment, where
θ is also randomly generated along with the realization
of X, so the relevant joint distribution is fXΘ(x,θ|H1) =
fX(x;θ) fΘ(θ|H1. In that context, the Bayes factor con-
structed using the same prior as the Monte Carlo simulation
gives the most powerful test, when attention is restricted to
tests which define C using only X and not Θ.

Tuesday, November 21, 2017

4 Estimating Rates from Counting

Experiments

See Gregory, Chapter 14
A common experiment in Physics and Astronomy involves

counting observed events (including, in principle, photons within
a spectral channel) and trying to estimate the rate associated
with the underlying process. This is often complicated by the
presence of background events which are not produced by the
process in question (as opposed to the foreground events we’re
interested in). Three common scenarios, of increasing complex-
ity are:

1. We observe k events in a time T and want to infer the rate
r associated with those events.

2. We know the background rate b and want to infer the fore-
ground (or signal) rate s = r − b from the observation.

3. Both the foreground rate s and the background rate b are
unknown, and we make observations both on-source (where

the rate will be s+b) and off-source (where only background
events will be present, and the rate will be b).

In all of these cases, the number of events observed should
obey a Poisson with a mean equal to the rate times the obser-
vation time,

p(k|r, I) =
(rT )k

k!
e−rT (4.1)

We’ll mostly consider Bayesian approaches to these problems,
but also keep the frequentist prescriptions in mind.

4.1 Case 1: No background

4.1.1 Frequentist approaches

Frequentist statistics doesn’t allow us to define probabilities for
the rate r to lie in an interval, but it does allow constructions
like the maximum likelihood estimate, which turns out to be

r̂ =
k

T
(4.2)

or a confidence interval at confidence level α, defined by

P (R` ≤ r ≤ Ru) = α (4.3)

where R` = `(K) and Ru = u(K) are statistics constructed
from the random variable K. The measured confidence interval
is then [`(k), u(k)] For example, if we are simply interested in
an upper limit, so that r` = 0, we want

α = P (r ≤ u(K)) = P (u−1(r) ≤ K) =
∞∑

j=u−1(r)

(rT )j

j!
e−rT

(4.4)
This looks like a pretty confusing way to define the function
u−1(r), but remember, we’re interested in u(k) for the actual
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measured k, so it means that if we evaluate (4.4) for r = u(k)
(which we can do since it’s supposed to be true for any r), we
get

α =
∞∑
j=k

(u(k)T )j

j!
e−u(k)T = 1−

k−1∑
j=0

(u(k)T )j

j!
e−u(k)T (4.5)

which is now an equation which can be solved for any k > 0.
For example, for k = 1 it gives us

α = 1− e−u(1)T (4.6)

so

u(1) =
ln 1

1−α

T
; (4.7)

for k = 2 it says

α = 1− [1 + u(2)T ]e−u(2)T (4.8)

which is a transcendental equation, but we can solve it numeri-
cally for u(2)T , given α.

4.1.2 Bayesian Approach

As usual, the Bayesian approach to the problem is more straight-
forward; if we want to know about r given that we’ve seen k
events, we just construct a posterior using Bayes’s theorem:

f(r|k, I) =
p(k|r, I)f(r|I)

p(k|I)
∝ p(k|r, I)f(r|I) (4.9)

The main subtlety is choosing the prior distribution f(r|I). An
obvious simple choice is a uniform prior

f(r|I0) =

{
1

rmax
0 < r < rmax

0 otherwise
(4.10)

where we will find our calculations simplify greatly if rmax is large
enough that k � rmaxT . There are some conceptual problems
with a uniform prior, though. For example, if we replaced the
rate parameter in question with a scale parameter β = 1

r
we

would find that the prior on β is no longer uniform, but instead
f(β|I0) ∝ β−2.

An alternative is to use the prior

f(r|I1) =

{
1

ln(rmax/rmin)
1
r

rmin < r < rmax

0 otherwise
(4.11)

This is often referred to as a Jeffreys prior5 and you can show
that f(β|I1) ∝ β−1. We can also call this “uniform in log rate”
because if you do a change of variables to λ = ln r you’ll find
f(λ|I1) is uniform over the allowed range.

Physically, the 1
r

prior is appropriate when the rate is uncer-
tain over many orders of magnitude, so e.g., it’s as likely to be
between 10−3 Hz and 10−2 Hz as between 10−5 Hz and 10−4 Hz.
More likely, we have a sense of what the order of magnitude
of the rate should be, so a uniform prior, in addition to being
simpler, may actually reflect our knowledge better.

So let’s move ahead with the assumption that p(r|I) is con-
stant, so Bayes’s theorem tells is that

f(r|k, I) ∝ p(k|r, I) ∝ (rT )k e−rT (4.12)

We can get the proportionality constant from normalization, so

f(r|k, I) =
(rT )k e−rT∫ rmax

0
(r′T )k e−r′T dr′

(4.13)

5This is a slight misnomer, since the Jeffreys prior is defined by a mathe-
matical formula using the likelihood, and for some distributions the uniform
prior is the Jeffreys prior. To make things more confusing, the Jeffreys prior
for the rate parameter in an exponential distribution is proportional to r−1

as above, but for a Poisson distribution, it’s actually proportional to r−1/2.
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If k � rmaxT , the denominator becomes∫ rmax

0

(r′T )k e−r
′T dr′ =

1

T

∫ rmaxT

0

uk e−u du ≈ 1

T

∫ ∞
0

uk e−u du

=
Γ(k + 1)

T
=
k!

T
(4.14)

so

f(r|k, I) ≈

{
T
k!

(rT )k e−rT 0 < r < rmax

0 otherwise
(4.15)

Note that this is a Gamma distribution with shape parameter
k + 1 and scale parameter T .

4.2 Case 2: Known Background

Now we have a case where the actual event rate is the unknown
quantity of interest, s (the signal or foreground rate) plus a
known background rate b, i.e., r = s + b. Now, if we knew
the exact number of background events, we could subtract that,
but as it is, all that’s known is the event rate, so there’s also
randomness in the background, so estimating s = r − b doesn’t
work out the same as estimating r.

4.2.1 Frequentist approach and issues

We can proceed mostly as before, for example we have a maxi-
mum likelihood estimate of

ŝ = r̂ − b =
k

T
− b (4.16)

and likewise our confidence interval could be defined using

P (R` − b ≤ s ≤ Ru − b) = α (4.17)

But if we happen to get a small number of events, the re-
sults can look weird. For instance, if k < bT , the maximum
likelihood estimate ŝ would be negative. Similar pathological
things can happen with the confidence intervals. This is one
of the problems addressed in Feldman and Cousins, “Unified
approach to the classical statistical analysis of small signals”,
Phys. Rev. D 57, 3873 (1998).

4.2.2 Bayesian method

The construction of the posterior proceeds as before, but now
we have

f(s|k, I) =
([s+ b]T )k e−[s+b]T∫ smax

0
([s′ + b]T )k e−[s′+b]T ds′

=
([s+ b]T )k e−sT∫ smax

0
([s′ + b]T )k e−s′T ds′

(4.18)
where the constant e−bT cancels out. The denominator can be
evaluated as∫ smax

0

([s′ + b]T )k e−s
′T dr′

=
1

T

k∑
j=0

k!

j!(k − j)!

∫ smaxT

0

uk−j (bT )j e−u du

≈ 1

T

k∑
j=0

k!

j!(k − j)!

∫ ∞
0

uk−j (bT )j e−u du︸ ︷︷ ︸
Γ(k−j+1)=(k−j)!

=
k!

T

k∑
j=0

(bT )j

j!

(4.19)

Tuesday, November 28, 2017

4.3 Case 3: Unknown/estimated background

We move now to the general case where the foreground and
background rates are both unknown. In order to estimate the
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foreground rate s and disentangle it from the background rate
b, we conduct two sets of observations:

• an OFF-source observation where the rate of events is b, of
duration Toff, in which koff events are observed

• an ON-source observation where the rate of events is s+ b,
of duration Ton, in which kon events are observed

The probability mass functions associated with the on- and off-
source distributions are

p(kon|s, b, I) =
([s+ b]Ton)kon

koff!
e−[s+b]Ton (4.20)

and

p(koff|b, I) =
(bToff)

koff

koff!
e−bToff (4.21)

Our goal is to make an inference about the rate r given the on-
and off-source observations; in the Bayesian approach this means
working out the posterior pdf f(r|kon, koff, I), where the infor-
mation I includes things like the duration of the observations,
but not a specific value for b.

4.3.1 Qualitative

Roughly speaking, the off-source observation will serve as a sort
of calibration and allow us to estimate b, albeit with some resid-
ual uncertainty. We can then estimate r from the on-source
observation, subject to the uncertainty in subtracting the back-
ground rate. So the result will look something like

b ∼ b̂± δb ∼ koff
Toff

±
√
koff
Toff

(4.22)

and

s ∼ ŝ± δs ∼ kon
Ton
− b̂±

√
kon

Ton
2 + (δb)2 (4.23)

but this back of the envelope calculation will fail if the numbers
of events are small.

4.3.2 Bayesian method

We want to work out the posterior pdf f(s|kon, koff, I) for the
foreground rate, given the on- and off-source observations, which
we’ve marginalized over the background rate b. We assume that
the priors on the foreground and background rates are uniform,
i.e.,

f(s|I0) =

{
1

smax
0 < s < smax

0 otherwise
(4.24)

and

f(b|I0) =

{
1

bmax
0 < b < bmax

0 otherwise
(4.25)

and we’ll assume koff � bmaxToff, kon � smaxTon and kon �
bmaxTon to make the integrals simpler.

There are several equivalent ways to arrive at basically the
same expression for the posterior. The first two use the fact
that the on- and off-source measurements are independent to
work in terms of p(kon, koff|s, b, I) = p(kon|s, b, I) p(koff|b, I).

1. Use Bayes’s theorem to get the joint posterior

f(s, b|kon, koff, I) ∝ p(kon, koff|s, b, I) f(s, b|I)

= p(kon, koff|s, b, I) f(b|I) f(s|I)
(4.26)

and then marginalize over b to get

f(s|kon, koff, I) =

∫ ∞
0

f(s, b|kon, koff, I)

∝
∫ ∞

0

p(kon|s, b, I) p(koff|b, I) f(b|I) f(s|I) db (4.27)
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2. Use Bayes’s theorem to write

f(s|kon, koff, I) ∝ p(kon, koff|s, I) f(s|I) (4.28)

and get the marginalized likelihood by writing

p(kon, koff|s, I) =

∫ ∞
0

p(kon, koff|s, b, I) f(b|I) db (4.29)

3. Consider I ′ = koff, I to be the state of information after
the off-source experiment, and describe the observation in
two steps: First, we get a pdf for b based on the off-source
experiment

f(b|I ′) = f(b|koff, I) ∝ p(koff|b, I) f(b|I) (4.30)

and then use this posterior as the prior on b in the on-source
experiment:

f(s|kon, I ′) ∝
∫ ∞

0

p(kon|s, b, I ′) f(b|I ′) db f(s|I ′)

∝
∫ ∞

0

p(kon|s, b, I) p(koff|b, I) f(b|I) db f(s|I) (4.31)

where we use the fact that neither the pmf for the on-source
experiment nor the pdf for the signal rate depend on the
outcome are directly affected by the results of the off-source
experiment, so p(kon|s, b, I ′) = p(kon|s, b, I) and f(s|I ′) =
f(s|I).

Of course, it’s not surprising that all three approaches give the
same expression, since they all just follow the rules of probabil-
ity. The last approach gives us a head start to constructing the
posterior on s, since we know the pdf of the background rate
after the off-source experiment will be a Gamma distribution

f(b|koff, I) ∝ (bToff)
koffe−bToff (4.32)

Note that this distribution has a mean of koff+1
Toff

and a width of
√
koff+1
Toff

, so in the limit of a long off-source observation with many
events, we get a more and more sharply-peaked distribution in
b, which makes the estimation of s tend towards the case of a
know background.

Moving on to the construction of the posterior on the fore-
ground rate,

f(s|kon, koff, I) ∝
∫ ∞

0

([s+b]Ton)kone−[s+b]Ton(bToff)
koffe−bToff db

∝ e−sTon
∫ ∞

0

(s+ b)konbkoffe−b(Ton+Toff) db

∝ e−sTon
kon∑
j=0

kon!

(kon − j)!j!
(s[Ton + Toff])

j

∫ ∞
0

ukon+koff−je−u du

∝
kon∑
j=0

(kon + koff − j)!
(kon − j)!j!

(
1 +

Toff
Ton

)j
(sTon)j e−sTon (4.33)

Now, it’s pretty straightforward to do the integral over s and
work out that normalization constant to get

f(s|kon, koff, I) =
Ton

∑kon
j=0

(kon+koff−j)!
(kon−j)!j!

(
1 + Toff

Ton

)j
(sTon)j e−sTon∑kon

j′=0
(kon+koff−j′)!

(koff−j′)!

(
1 + Toff

Ton

)j′
(4.34)

although in practice the shape of the pdf is more interesting.
You will investigate this on the homework.
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Thursday, November 30, 2017

5 Monte Carlo Methods

Monte Carlo, in general, refers to calculations carried out with
random or pseudo-random elements. (The name refers to the
Monte Carlo Casino in Monaco.) There are a number of dif-
ferent such methods, but we’ll focus on two; in each case we’ll
assume the model includes a sampling distribution f(x|θ, I) that
describes the joint pdf of the data X given a parameter vector
θ.

1. Monte Carlo simulations to test the validity of a statistical
method or estimate the sampling distribution of statistics.

2. Drawing samples from a posterior to simulate higher-
dimensional integrals, including the Markov Chain Monte
Carlo (MCMC) method for generating a sample.

Note: how to simulate a random variable with a specified pdf
f(x):

1. Easy way/cheating: use statistical package, e.g.,
scipy.stats.norm(loc=mu,scale=sigma,size=n)

2. General approach for univariate distribution f(x): given
cdf F (x) =

∫ x
−∞ f(x′) dx′, invert to get x = F−1(P ) for

0 < P < 1. Generate uniform random number α and take
x = F−1(α). Note that if you have a closed form cdf that
you can invert, the distribution is probably already coded
up in a statistical package

3. Grid approximation: cover the space of possible x values
with a grid {xi} of discrete points. (Ideally it should ex-
tend over the whole space over which f(x) has support,
and be closely enough spaced that f(xi) and f(xj) are not
so different if xi and xj are adjacent points in the grid.

You can then draw from the discrete distribution with pmf
p(xi) = f(xi)/

∑
j f(xj).

4. Markov Chain Monte Carlo. We will discuss this on Tues-
day.

5.1 Monte Carlo Simulations

The frequentist definition of probability tells us that if we have a
repeatable experiment described by random vector X with pdf
f(x|θ, I), and we do N repetitions of the experiment, whose
results are {xs|s = 1, . . . , N}, probabilities constructed using
X will correspond to frequencies of the corresponding events
constructed from the {xvecs}. Specifically, for some region C of
the data space,

P (X ∈ C|θ, I) ≈ N(xs ∈ C)

N
(5.1)

when N is sufficiently large. So we can use this to ei-
ther check or estimate things like the distribution of a statis-
tic Y = g(X) or the power γ(θ) = P (X ∈ C|θ, I) of
a test definied by the critical region C. The latter can
be estimated using the fraction of points in the sample
{xs} which are in C. For an example of the former, see
the notebook http://ccrg.rit.edu/~whelan/courses/2017_

3fa_ASTP_611/data/notes_inference_montecarlo.ipynb

5.2 Sampling from a Posterior

One of the ways in which the Bayesian interpretation of probabil-
ity is more powerful than the frequentist one is that it allows us
to assign probabilities to things that are uncertain, without re-
quiring them to be the outcomes of repeatable experiments. But
we can also turn this relationship on its head to our benefit. A
posterior pdf f(θ|x, I) doesn’t describe the relative frequencies
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of a bunch of θ values, but the mathematics of probability are
the same. So if we can use the pdf f(θ|x, I) to synthetically gen-
erate a sample {θs} (where x is the one actual observed data vec-
tor), relative frequencies in the sample will correspond approxi-
mately to probabilities in the posterior. We now illustrate this in
the notebook http://ccrg.rit.edu/~whelan/courses/2017_

3fa_ASTP_611/data/notes_inference_sampling.ipynb

Tuesday, December 5, 2017

6 Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) methods execute a ran-
dom walk through parameter space, and are designed to visit
points in parameter space in proportion to their probabilities
under the target distribution q(θ) which is proportional to the
posterior from which we’re trying to sample, p(θ|x, I) ∝ q(θ).
The “Markov” part means that the probability of reaching a
point θt at step t of the chain depends only the previous point
θt−1 and not any earlier points in the chain.

6.1 Metropolis Algorithm

To carry out an MCMC we need a rule for moving from one point
to another in parameter space. Typically there is a proposal
distribution J(θ′|θ) from which a jump is considered, and then
a rule for deciding whether to jump to that new point. The
Metropolis algorithm requires that the rule be symmetric, so
J(θ′|θ) = J(θ|θ′) but doesn’t otherwise restrict it.6 The rule is
then as follows: draw a point θ∗ from J(θ∗|θt−1) and calculate

6J(θ′|θ) should be a probability distribution which we can easily draw
from for any θ with f(θ|x, I) > 0.

the ratio

r =
f(θ∗|x, I)

f(θt−1|x, I)
=

q(θ∗)

q(θt−1)
; (6.1)

If r ≥ 1, make the jump and let θt = θ∗. If r < 1, generate a
Uniform[0, 1] random number u; if u ≤ r, make the jump and
θt = θ∗. If u > r, don’t make the jump and let θt = θt−1. I.e.,
make the jump with probability r.

We’ll see in detail why it works on Thursday, but as a matter
of formalism consider how the rules translate into statements
about the probability distributions for the proposed jump posi-
tion θ∗ and the next value θt in terms of the current value θt−1.
The proposal rule just tells us that

f(θ∗|θt−1,x, I) = J(θ∗|θ) (6.2)

while the acceptance rule tells us that

f(θt|θ∗,θt−1,x, I) =

{
δ(θt − θ∗) if r ≥ 1

rδ(θt − θ∗) + (1− r)δ(θt − θt−1) if r < 1

(6.3)
where δ(θ − θ′) is the Dirac delta function defined so that∫

δ(θ − θ′) f(θ) dθ = f(θ′) (6.4)

and r is the ratio defined in (6.1). Note that if r < 1,
f(θt|θ∗,θt−1,x, I) is a mixture distribution, which is just a lin-
ear combination of other probability distributions (in this case
degenerate ones). It’s basically just a manifestation of the sum
rule. If I says that θ can be drawn from distributions D1 or D2,
the probability distribution is

f(θ|I) = f(θ|D1, I) P(D1|I) + f(θ|D2, I) P(D2|I) (6.5)

where f(θ|D1, I) and f(θ|D2, I) are separately normalized prob-
ability distributions, and P(D1|I) + P(D2|I) = 1.
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Returning to the distribution (6.3) we can actually combine
the two cases by writing

f(θt|θ∗,θt−1,x, I) = min(1, r)δ(θt−θ∗)+[1−min(1, r)]δ(θt−θt−1)
(6.6)

The product rule then gives the joint distribution

f(θt,θ∗|θt−1,x, I) = J(θ∗|θt−1)

(
min(1, r)δ(θt − θ∗)

+ [1−min(1, r)]δ(θt − θt−1)

)
(6.7)

We will show that the target distribution is the stable endpoint
of the MCMC by showing that if the marginal sampling distri-
bution for one step is the target distribution, than the marginal
sampling distribution for the next step is as well:

f(θt−1|MCMC) = f(θt−1|x, I) implies f(θt|MCMC) = f(θt|x, I)
(6.8)

6.2 Why It Works

Now we turn to a demonstration of why the Metropolis algo-
rithm produces, over the long term, samples from the target
distribution. As a result of some mathematical theory that’s
beyond the scope of this course, any reasonable MCMC will
settle down into a unique equilibrium, so all we need is to
demonstrate that the target distribution is an equilibrium state.
What that means is that if we (hypothetically) make a draw
from the target distribution, and then take one MCMC step
from that point and consider where we ended up, the proba-
bility distribution for the new point is also the target distri-
bution. In the notation we’ve been using, this means that if
we assume f(θt−1|MCMC) = f(θt−1|x, I) we can show that

f(θt|MCMC) = f(θt|x, I). We’ll do this by constructing the
joint distribution f(θt,θt−1|MCMC) for the two points. Note
that we’re assuming∫

f(θt,θt−1|MCMC) = f(θt−1|MCMC) = f(θt−1|x, I) (6.9)

so if the functional form of f(θt,θt−1|MCMC) is symmetric un-
der interchange of the two arguments θt and θt−1, it will be
the case that the two marginal distributions f(θt|MCMC) and
f(θt−1|MCMC) have the same form, and thus we’ll have proved
that f(θt|MCMC) = f(θt|x, I).

To construct the joint distribution f(θt,θt−1|MCMC) we start
with the joint distribution

f(θt,θ∗,θt−1|MCMC) = f(θt−1|x, I)J(θ∗|θt−1)
(

min(1, r)δ(θt−θ∗)

+ max(1− r, 0)δ(θt − θt−1)
)

= δ(θt − θ∗)J(θ∗|θt−1) min(f(θt−1|x, I), f(θ∗|x, I))

+ δ(θt − θt−1)J(θ∗|θt−1) max(f(θt−1|x, I)− f(θ∗|x, I), 0)
(6.10)

Next we marginalize over θ∗; in the first term, the delta function
just sets θ∗ to θt. The second term is more complicated, but
the result of the integral (factoring out the θ∗-independent delta
function) is∫

J(θ∗|θt−1) max(f(θt−1|x, I)− f(θ∗|x, I), 0) dθ∗

=

∫
f(θ∗|x,I)<f(θt−1|x,I)

J(θ∗|θt−1)
[
f(θt−1|x, I)− f(θ∗|x, I)

]
dθ∗

= f(θt−1, reject|x, I) (6.11)
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I.e., it’s the probability of drawing θt−1 from the target distri-
bution and then rejecting the next jump. So the result of the
marginalization is

f(θt,θt−1|MCMC) = J(θt|θt−1) min(f(θt−1|x, I), f(θt|x, I))

+ δ(θt − θt−1)f(θt−1, reject|x, I) (6.12)

The first term is symmetric under interchange θt ←→ θt−1 as
long as the proposal distribution J(θt|θt−1) is. The second term
is also symmetric, because the Dirac delta function is even, and
is only non-zero if θt = θt−1. Thus the joint distribution is
symmetric and both marginal distributions are the same, i.e.,
the target distribution.

6.3 Metropolis-Hastings Algorithm

The Metropolis algorithm can be extended to situations where
the proposal distribution is not symmetric, e.g., distributions
which avoid boundaries of parameter space. The modification
is to the acceptance rule, which now uses the value of the ratio

r′ =
f(θ∗|x, I) J(θt−1|θ∗)
f(θt−1|x, I) J(θ∗|θt−1)

=
q(θ∗) J(θt−1|θ∗)
q(θt−1) J(θ∗|θt−1)

; (6.13)

the rule is as before, i.e., accept the jump with probability
min(1, r′).

6.4 Examples and Properties

We can investigate the behavior of a simple MCMC using
the notebook http://ccrg.rit.edu/~whelan/courses/

2017_3fa_ASTP_611/data/notes_inference_mcmc.ipynb

(see also the old notebook http://ccrg.rit.edu/~whelan/

courses/2014_1sp_ASTP_611/data/notes_inference_

mcmctrinomial.ipynb which draws from a discrete distribu-
tion.)

6.4.1 Choice of Proposal Distribution

One important piece of the puzzle is the proposal distribution
J(θ|θ′). The typical jump size should be on the same scale as
the features of the distribution. If the proposed jumps are too
big, most of them will be to places where the target distribution
is small, and will be likely to be rejected, so the chain will move
slowly because it’s sitting at the same point without jumping
for many steps. Conversely, if the proposed jumps are too small,
the chain will move very slowly and therefore take more steps to
explore the full support of the posterior. As an extreme example
of this, the proposal distribution J(θ|θ′) = δ(θ − θ′) will of
course satisfy the detailed balance requirement (since θt = θt−1,
if θt−1 were drawn from the target distribution, θt would be too),
but the chain will clearly never expore the parameter space.

6.4.2 Diagnostics

• Plot the chains and make sure they revisit the same points
in parameter space

• Plot the first and second halves of the same chain and make
sure they look similar. Note that the very first part of the
chain will be influenced by the starting point. It’s standard
to discard this “burn-in” (10-50% of the steps typically)
before doing anything with the chain.

• Start chains in different parts of parameter space, discard
the burn-in of each, and check that the two chains look
similar otherwise.

6.4.3 Further Reading

There are a lot of MCMC examples in the notes I wrote
up for the Bayesian course: http://ccrg.rit.edu/~whelan/

courses/2017_1sp_STAT_489/notes_comp.pdf
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