
ASTP 611-01: Statistical Methods for Astrophysics

Problem Set 8

Assigned 2017 October 31
Due 2017 November 7

Show your work on all problems! Be sure to give credit to any collaborators, or
outside sources used in solving the problems. Note that if using an outside source to do
a calculation, you should use it as a reference for the method, and actually carry out the
calculation yourself; it’s not sufficient to quote the results of a calculation contained in an
outside source.

1 MAP Estimation for a Counting Experiment

a) Consider an experiment where the observed quantity is the number of events x in a
particular interval of a Poisson process, where the parameter θ is the expected number
of events (rate times interval duration) for that process.

i) Write the likelihood function L(θ;x) = f(x|θ) for a given observed value of x.

ii) Find the maximum likelihood estimate θ̂(x) by maximizing the log-likelihood
`(θ;x) = lnL(θ;x).

iii) Construct the Fisher information I(θ) = −E [`′′(θ;X)].

iv) Suppose that the prior f(θ) is can be treated as uniform over the region of interest,

so that f(θ|x) ∝ f(x|θ); Taylor expand ln f(θ|x) about the point θ = θ̂(x) to
second order.

b) Now consider the case where we have n counting experiments with numbers of counts
{xi|i = 1, . . . , n}. Suppose that each xi is drawn from a Poisson distribution with
its own parameter µi. In particular, suppose we’re counting the number of photons
collected in a series of bins with frequencies {νi|i = 1, . . . , n}, and the model we’re
trying to fit is a background which is approximately linear over the band of interest,
so µi = θ0 + θ1νi, and the are parameters θ0 and θ1.

i) Write the likelihood function L(θ0, θ1) = f({xi}|θ0, θ1).
ii) Work out the equations satisfied by the best-fit parameters θ̂0 and θ̂1 which max-

imize the log-likelihood `(θ0, θ1) = lnL(θ0, θ1). For the case n = 3, ν1 = −1,

ν2 = 0, ν3 = 1, solve the equations to get θ̂0 and θ̂1 as functions of the {xi}.
iii) Work out the second derivatives ∂2`

∂θα∂θβ
, where α, β ∈ {0, 1}. For the n = 3

case described above, evaluate these at the maximum likelihood point to get the

elements Hαβ = − ∂2`
∂θα∂θβ

∣∣∣
θ0=θ̂0,θ1=θ̂1

of the Hessian matrix.

c) In a more realistic situation, we’d be trying to fit something like a line plus a continuum,
so for instance µi = a + bνi + I

1+([νi−ν0]/γ)2 and then the parameters would be a, b, I,
ν0, and γ. Perhaps some would be known, perhaps not, and we might marginalize the
likelihood or the posterior over parameters we didn’t care about. (No question, just
food for thought.)
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2 Plausible Intervals

Consider a posterior probability distribution of the form

f(θ|D) =
θ2

2
e−θ 0 < θ <∞ (2.1)

a) Use the ipython notebook http://ccrg.rit.edu/~whelan/courses/2017_3fa_ASTP_

611/data/ps08.ipynb to determine the lower and upper bounds of the following 90%
plausible intervals:

i) An upper limit (so the lower bound is 0)

ii) A lower limit (so the upper bound is ∞)

iii) A symmetric plausible interval, so P (θ < θ`) = 5% = P (θ > θu)

iv) The narrowest 90% plausible interval which can be constructed

In each case, plot the pdf f(θ|D) with the area under the curve between θ` and θu
shaded. Turn in the notebook with the relevant plots and calculations, and include
the bounds of the plausible intervals in your homework solution.

b) Find the mode θ̂ of the distribution, i.e., the θ which maximizes f(θ|D). Why does it

not make sense to construct a confidence interval centered on θ̂?

3 Upper Limits

Consider an experiment designed to measure an unknown physical quantity θ, which returns
a value X whose pdf is defined by the likelihood function

f(x|θ) =
e−(x−θ)

2/2σ2

σ
√

2π
(3.1)

a) Suppose the experiment has been performed and the result x has been found. Calculate
the frequentist upper limit θfreqUL at confidence level α, defined by∫ ∞

x

f(x′|θfreqUL ) dx′ = α . (3.2)

You should be able to write this with the help of the standard normal percentile zξ
defined so that 1− Φ(zξ) = 1√

2π

∫∞
zξ
e−z

2/2 dz = ξ. Note that z1−ξ = −zξ.
b) Consider a Bayesian analysis with a uniform prior on θ, so that by Bayes’s theorem,

the posterior is

f(θ|x) =
f(θ)

f(x)
f(x|θ) = A f(x|θ) . (3.3)

Using the explicit form of the likelihood (3.1) and the normalization requirement∫ ∞
−∞

f(θ|x) dθ = 1 (3.4)

find the value of A and therefore the explicit form of the posterior f(θ|x).
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c) Supposing again that we’ve performed the experiment and found a result x, find the
Bayesian upper limit θBayes

UL at confidence level α, defined by∫ θBayes
UL

−∞
f(θ|x) dθ = α (3.5)

d) For the case where α = 0.9, write θfreqUL and θBayes
UL explicitly in terms of x and σ, with

any constants evaluated to three significant figures. (You’ll need to refer to the explicit
value of zξ for a particular ξ; in matplotlib you can get access to the inverse standard
normal cdf via from scipy.special import ndtri.)

e) Suppose now that θ is physically constrained to be positive and let the prior be uniform
for positive θ, so that the posterior is

f(θ|x) =
f(θ)

f(x)
f(x|θ) =

{
B f(x|θ) θ > 0

0 θ < 0
. (3.6)

Use the normalization condition

1 =

∫ ∞
0

f(θ|x) dθ = B
∫ ∞
0

f(x|θ) dθ (3.7)

to find the value of B and therefore the explicit form of f(θ|x).

f) Supposing again that we’ve performed the experiment and found a result x, calculate
the Bayesian upper limit θBayes+

UL associated with the posterior (3.6), defined by∫ θBayes+
UL

0

f(θ|x) dθ = α (3.8)
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