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0 Preliminaries

0.1 Administrata

• Syllabus

• Instructor’s name (Whelan) rhymes with “wailin’”.

• Text: Devore, Probability and Statistics for Engineering and
the Sciences. The official version is the 9th edition, which
is probably the version you used in MATH 251. There are
older editions around, and the changes between editions are
generally minimal, but make sure you’re doing the right ver-
sion of assigned problems! (We won’t be using WebAssign
for homework.)

• Course website: http://ccrg.rit.edu/~whelan/

MATH-252/. I intend to post materials there rather
than on mycourses.

• Course calendar: tentative timetable for course.

• Structure:

– Read relevant sections of textbook before class
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– Lectures to reinforce and complement the textbook

– Practice problems (odd numbers; answers in back but
more useful if you try them before looking!).

– Problem sets to hand in: practice at writing up your
own work neatly & coherently. Problem sets will also
contain some numerical exercises intended to be done
in minitab. Note: doing the problems is very impor-
tant step in mastering the material.

– Minitab: proprietary statistical software package,
sort of like Excel with built-in statistical functional-
ity. Available for free-as-in-beer download on cam-
pus (or over VPN) via https://www.rit.edu/its/

services/software-licensing/minitab. Primary
version runs under Windows; there is also “Minitab
Express” for Mac (and Windows). Apparently no ver-
sion exists for Linux, and I haven’t been able to get ei-
ther one to run under an emulator. Minitab is installed
in all of the computer labs, including Gosnell 08-1345.
It will probably be possible (if less straightforward)
to do the numerical exercises in another environment,
like Python/SciPy, although someone is likely to ex-
pect you to know minitab down the road.

– Quizzes: closed book, closed notes, use scientific cal-
culator (not graphing calculator, not your phone!)

– Prelim exams (think midterm, but there are two of
them) in class at roughly 1/3 and 2/3 of the way
through the course: closed book, one handwritten for-
mula sheet, use scientific calculator (not your phone!)

– Final exam will be cumulative (but focus more on last
third of the course).

• Grading:

5% Problem Sets & Computer Exercises

10% Quizzes

25% First Prelim Exam

25% Second Prelim Exam

35% Final Exam

You’ll get a separate grade on the “quality point” scale (e.g.,
2.5–3.5 is the B–including B+ and B−–range) for each of
these five components; course grade is weighted average.

0.2 Outline

1. Parameter Estimation

(a) Point Estimation (Chapter Six)

(b) Interval Estimation (Chapter Seven)

2. Hypothesis Testing

(a) One-Sample Hypothesis Testing (Chapter Eight)

(b) Two-Sample Inference (Chapter Nine)

3. Model Fitting

(a) Regression (Chapter Twelve)

(b) Goodness of Fit (Chapter Fourteen)

4. Non-Parametric Methods (Chapter Fifteen, time permit-
ting)

Warning: you will generally be expected to recall and apply
what you learned in MATH 251. For convenience, these notes
include a short review of some of the most relevant parts, for
your perusal outside of class.
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0.3 Review of Statistical Formalism

0.3.1 Descriptive Statistics

In this course, we will perform a number of manipulations on
data sets in order to make probabilistic statements on the un-
derlying source of the data. (E.g., properties of a population
from which a sample may be drawn.) The basic building blocks
of these calculations are the quantities of descriptive statistics,
covered in Chapter One of Devore (see http://ccrg.rit.edu/

~whelan/courses/2013_1sp_1016_345/notes01.pdf for more
details.)

As a quick refresher, consider rainfall totals1 from a weather
station in Phoenix, AZ for the years 2011-2015: 4.92, 5.35, 6.77,
8.74, and 5.08 inches, respectively. We write this as x1 = 4.92,
x2 = 5.35, x3 = 6.77, x4 = 8.74, and x5 = 5.08 inches, re-
spectively. Recall some of the basic summary statistics we can
construct from these data:

• To get the sample median x̃, we sort the values in order
from lowest to highest, and pick the middle one:

4.92, 5.08, 5.35, 6.77, 8.74

Thus x̃ = 5.35. Note that at least half the {xi} have xi ≤ x̃
and at least half have xi ≥ x̃. The median is also called the
50th percentile, and this can be extended to other choices:
6.77 is the 70th percentile because at least 70% of the values
have xi ≤ 6.77, and at least 30% have xi ≥ 6.77.

1http://alert.fcd.maricopa.gov/alert/Rain/Master/4810.pdf

Note that we’ve taken a rather small dataset to illustrate what’s happening
in these calculations by hand. In practice, you’d process any decent-sized
dataset with a computer package of some sort.

• The sample mean x is the average value

x =
1

5
(x1 + x2 + x3 + x4 + x5) =

1

5

5∑
i=1

xi

=
4.92 + 5.35 + 6.77 + 8.74 + 5.08

5
=

30.86

5
= 6.172

(0.1)

Note that it would be more appropriate to quote this value
as 6.17, because the individual values are quoted to three
significant figures, but we don’t know that e.g., 4.92 means
4.920000000 and not 4.924 or 4.916. As a general rule, your
answers shouldn’t carry more significant figures than the
experimental data you start with. Your calculator, statis-
tical software program, etc can carry more than that, and
it’s good to keep some extra digits for internal calculations
and not round off intermediate quantities too much.

In general, if there are n data points in the sample, the
sample mean is defined as x = 1

n

∑n
i=1 xi.

• The sample variance s2 is defined as

s2 =
1

n− 1

n∑
i=1

(xi − x)2 (0.2)

It’s sort of an average square deviation from the sample
mean (we’ll get to the reason it’s n − 1 rather than n in a
moment). So to construct it for our rainfall data, we’d do
the following:

i xi xi − x (xi − x)2

1 4.92 in −1.252 in 1.567504 in2

2 5.35 in −0.822 in 0.675684 in2

3 6.77 in 0.598 in 0.357604 in2

4 8.74 in 2.568 in 6.594624 in2

5 5.08 in −1.092 in 1.192464 in2
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Adding the last column gives 10.38788 in2, so the sample
variance in this case is s2 = 10.38788 in2

4
= 2.59697 in2. Note

the units on this are inches-squared, not inches. If we write
this to two significant figures, we get 2.60 in2.

• The sample standard deviation s is the square root of the
sample variance, so here s =

√
2.59697 in2 ≈ 1.61 in.

There is a mathematical trick that notes that (after some alge-
bra)

n∑
i=1

(xi − x)2 =
n∑
i=1

(xi)
2 − n(x)2 (0.3)

which can be used to calculate the sample variance as

s2 =
1

n− 1

n∑
i=1

(xi)
2 − 1

n(n− 1)

(
n∑
i=1

xi

)2

(0.4)

in the case where you happen to know
∑n

i=1 xi and
∑n

i=1(xi)
2.

This “shortcut” is actually somewhat dangerous with real data,
though; if it happens that the typical value of (xi − x)2 is a lot
smaller than x2 itself, you can have a situation where the two
terms being subtracted in (0.4) can be a lot larger than their
difference, and so you can get large errors in s2 if you round off
(
∑n

i=1 xi)
2 and/or

∑n
i=1(xi)

2 (or, in extreme cases, a computer
does it for you). See http://www.johndcook.com/blog/2008/

09/28/theoretical-explanation-for-numerical-results/

0.3.2 Random Variables

The second concept to recall from your previous course is the
concept of a random variable. We generally write this with
a capital letter X, and define the probability it has to take
on certain values. For any random variable, we can define the

cumulative distribution function (cdf)

F (x) = P (X ≤ x) (0.5)

If there are multiple random variables and we need to specify
which one we’re talking about, we may write this FX(x).

A discrete random variable can take one of a (possibly infinite)
set of values, and the probability of it taking a particular value
is given by the probability mass function (pmf, written pX(x) if
necessary)

p(x) = P (X = x) (0.6)

The probability of X taking on one of a set of values A is the
sum of the pmf over the values in that set:

P (X ∈ A) =
∑
x∈A

p(x) (0.7)

As a special case, the sum of all the pmf values is equal to the
probability that the random variable takes on some value, i.e.,∑

x

p(x) = 1 (0.8)

This is the normalization condition for the pmf.

An example of a discrete random variable is a binomial ran-
dom variable; this describes the situation where we do a set of
“Bernoulli trials”, experiments which each have the same prob-
ability p of “success” and have no influence on each other. If we
do n such trials, the number of successes is a random variable
X with pmf

p(x) = b(x;n, p) =

(
n

x

)
px(1− p)n−x =

n!

x!(n− x)!
px(1− p)n−x

(0.9)
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where x! = 1× 2×· · ·× (x− 1)×x is the factorial of x, so that(
n

x

)
=
n× (n− 1)× · · · × (n− x+ 1)× (n− x)

x× (x− 1)× · · · × 2× 1
(0.10)

See Chapter Three of Devore and http://ccrg.rit.edu/

~whelan/courses/2011_4wi_1016_351/notes03.pdf for more
details on discrete random variables.

A continuous random variable has zero probability of taking
any precise numerical value, but its probability of falling in a
range of interest is defined by its probability density function
(pdf) f(x) (or fX(x))

P (a < X < b) =

∫ b

a

f(x) dx (0.11)

Note that since there’s zero probability that X equals exactly
a or b, it doesn’t matter if we write < or ≤ in the probability.
The normalization condition for the pdf of a continuous random
variable is

P (−∞<X <∞) =

∫ ∞
−∞

f(x) dx = 1 (0.12)

The pdf is the derivative of the pdf, so

f(x) = F ′(x) and F (x) =

∫ x

−∞
f(y) dy (0.13)

One common type of continuous random variable is that de-
scribed by a normal distribution (also known as a Gaussian dis-
tribution), which has a pdf described by parameters µ (which
may be positive, negative or zero and σ (which must be positive)

f(x) = f(x;µ, σ) =
1

σ
√

2π
e−(x−µ)

2/(2σ2) (0.14)

its cumulative distribution function is

F (x) = Φ

(
x− µ
σ

)
(0.15)

where the function Φ(z) is defined as

Φ(z) =
1√
2π

∫ z

−∞
e−u

2/2 du (0.16)

See Chapter Four of Devore and http://ccrg.rit.edu/

~whelan/courses/2011_4wi_1016_351/notes04.pdf for more
details on continuous random variables.

An important quantity which can be calculated from a prob-
ability distribution (pmf or pdf) is the expected value E(X),
which is defined as a weighted average value constructed from
the pmf or pdf:

E(X) =
∑
x

x p(x) or E(X) =

∫ ∞
−∞

x f(x) dx (0.17)

This also works for any function of the random variable:

E(h(X)) =
∑
x

h(x) p(x) or E(h(X)) =

∫ ∞
−∞

h(x) f(x) dx

(0.18)
We often write the expected value E(X) as µ or µX and refer
to it as the mean of the distribution. This is analogous to the
sample mean x of descriptive statistics, but instead of averag-
ing over a specific set of values in the dataset, it’s averaging
over a hypothetical repeated set of measurements. This is also
sometimes called the population mean.

One application of the expected value is the variance V (X) =
E([X − µX ]), which is sometimes written σ2 or σ2

X . This is the
analogue of the sample variance s2. We sometimes call σ2

X the
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variance of the distribution associated with X, or the population
variance.

Finally, the median of the distribution, µ̃ or µ̃X is defined
indirectly as the value that the random variable has at least a
50% chance of lying on either side of:

P (X ≤ µ̃) ≥ 1

2
≤ P (X ≥ µ̃) (0.19)

For a discrete distribution, this has the simpler form∫ µ̃

−∞
f(x) dx =

1

2
=

∫ ∞
µ̃

f(x) dx (0.20)

0.3.3 Random Samples

Recall the concept of joint probability distributions for multiple
random variables. For instance, if X1, X2, and X3 are discrete
random variables, we can write the joint pmf

p(x1, x2, x3) = P ([X1 = x1] ∩ [X2 = x2] ∩ [X3 = x3]) (0.21)

I.e., the probability that X1 takes the value x1, and X2 takes
the value x2, and X3 takes the value x3. Likewise, if X1 and X2

are continuous random variables, the joint pdf f(x1, x2) can be
used to construct probabilities like

P ([a<X1<b]∩[c<X2<d]) =

∫ d

c

(∫ b

a

f(x1, x2) dx1

)
dx2 (0.22)

We say that X1, X2,. . .Xn are independent random variables if,
for any possible values of x1, x2,. . .xn, the joint pdf (taking the
continuous case for concreteness) can be written

X1, X2, . . . Xn independent means

f(x1, x2, . . . , xn) = f1(x1) f2(x2) · · · fn(xn) (0.23)

A special case of this is when all of the functions f1, f2, . . . , fn
are actually the same function; then we say the random variables
are independent and identically distributed (iid):

X1, X2, . . . Xn iid means

f(x1, x2, . . . xn) = f(x1)f(x2) · · · f(xn) (0.24)

We refer to this as a sample of size n from the distribution f(x).
Given n random variables X1, X2, . . .Xn, we refer to any

function of the rvs as a statistic. By its nature, a statistic is itself
a random variable. A number of useful statistics are created by
combining the rvs in a sample using the same formulas that
define descriptive statistics from a dataset. For example:

• The sample mean is X = 1
n

∑n
i=1Xi

• The sample variance is S2 = 1
n−1

∑n
i=1(Xi −X)2s

• The sample median X̃ is a random variable defined by sort-
ing the n values returned by the random variables in the
sample and picking the one in the middle.

The linearity of the expected value can be used to work out
the expected values of linear combinations of random variables.
In particular, if

Y = a1X1 + a2X2 + · · · anXn =
n∑
i=1

aiXi (0.25)

then

µY = E(Y ) = a1E(X1) + a2E(X2) + · · ·+ anE(Xn)

= a1µ1 + a2µ2 + · · ·+ anµn
(0.26)

In the case of the variance (writing it for n = 2 for compactness,

V (a1X1 + a2X2) = a1
2V (X1) + 2a1a2 Cov(X1, X2) + a2

2V (X2)
(0.27)
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where
Cov(X1, X2) = E([X1 − µ1][X2 − µ2]) (0.28)

is the covariance of the random variables X1 and X2. An impor-
tant result shows that independent random variables have zero
covariance,2 so

if X1, . . . , Xn independent,

V (Y ) = a1
2V (X1) + a2

2V (X2) + · · ·+ an
2V (Xn) (0.29)

Returning to the case of a random sample, the statistical
properties of the sample mean X and S2 are of interest, specif-
ically, if the distribution has mean µ = E(Xi) and variance
σ2 = V (Xi) = E([Xi − µ]2),

E(X) = µ and V (X) =
1

n
σ2 (0.30)

One important result (shown in http://ccrg.rit.edu/

~whelan/courses/2011_4wi_1016_351/notes05.pdf for ex-
ample) is that

E

(
n∑
i=1

(Xi −X)2

)
= (n− 1)σ2 ; (0.31)

this means that the sample variance S2, defined with n − 1 in
the denominator, has an expectation value

E(S2) = σ2 (0.32)

This is why the sample variance s2 generated from a data set is
usually given as 1

n−1
∑n

i=1(xi − x)2.
Finally, note that the normal distribution has some interesting

properties:

2The converse is not true; zero covariance does not imply independence.

1. Any statistic constructed as a linear combination of
normally-distributed random variables is itself normally dis-
tributed

2. The sum (or the mean) of a large number of iid random vari-
ables of almost any distribution is approximately normally
distributed. This is known as the Central Limit Theorem.

See Chapter Five of Devore and http://ccrg.rit.edu/

~whelan/courses/2011_4wi_1016_351/notes05.pdf for more
details on joint distributions and random samples.

Properties of Sums of Random Variables

To =
n∑
i=1

Xi (0.33)

Property When is it true?

E(To) =
∑n

i=1E(Xi) Always
V (To) =

∑n
i=1 V (Xi) When {Xi} independent

To normally distributed
Exact, when {Xi} normally distributed

Approximate, when n & 30
(Central Limit Theorem)

Practice Problems

1.39, 1.51, 3.37, 3.39, 3.41, 3.43, 4.17, 4.29, 5.39, 5.45, 5.55, 5.65,
5.89
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1 Fundamentals of Point Estimation

Most of the applications we’ll be considering this semester are
within the context of a random sample of n independent, iden-
tically distributed (iid) random variables X1, . . .Xn drawn from
a distribution f(x; θ) whose precise form depends on a param-
eter θ whose value is generally unknown. This means the joint
distribution function for the sample will be

f(x1, . . . , xn) = f(x1; θ) f(x2; θ) · · · f(xn; θ) (1.1)

We’ll be considering procedures that allow us, one way or an-
other, to say something about the unknown value θ once we’ve
observed particular numerical values x1, . . . , xn for the random
variables X1, . . .Xn. It is also possible for the distribution to
depend on the values of multiple parameters θ1, θ2, . . . . For
instance, if our model specifies a normal distribution with un-
known mean µ and standard deviation σ, the joint pdf for X1,
. . .Xn will be

f(x1, . . . , xn) = f(x1;µ, σ) f(x2;µ, σ) · · · f(xn;µ, σ) (1.2)

The simplest thing we can do is come up with a point estimate
θ̂, which is our best estimate for the value of the parameter θ
given the data x1, . . . , xn. For example, if the parameter θ is
the mean value µ of the distribution,

µ = E(Xi) =

∫ ∞
−∞

x f(x;µ) dx (1.3)

one choice we can make for an estimate is the sample mean

x =
x1 + x2 + · · ·+ xn

n
=

1

n

n∑
i=1

xi (1.4)

Note that there is a distinction between the estimate x, which is
a number derived from the actual observed data, and the esti-
mator X = 1

n

∑n
i=1Xi, which is a random variable (also known

as a statistic) constructed out of the n random variables in the
random sample. Statements we’ll make about probability are
actually about the estimator X, for example, we can define the
probability P (X > µ), which is a statement about the behav-
ior of the estimator, but something like P (x > µ) can’t actually
be meaningfully defined in classical statistics, since x is a num-
ber we know from the data, and µ is a specific value, even if
we know it; since neither x nor µ is random, this probability
is either 0 or 1, depending on their values.3 This distinction
is somewhat obscured by the general notation, which relies on
context to distinguish between the estimator θ̂ = θ̂(X1, . . . , Xn)
and the estimate θ̂ = θ̂(x1, . . . , xn).

1.1 Bias of an Estimator

If an estimator θ̂ were perfect, it would equal θ, so θ̂ − θ is
a random variable which describes the error made in trying to
estimate θ. If the average value of that error is positive, it means
in some sense the estimator overestimates θ, while if it’s negative
it underestimates it. This average error is called the bias of the
estimator:(

bias of θ̂
)

= E(θ̂ − θ) = E(θ̂)− θ = µθ̂ − θ (1.5)

An estimator for which E(θ̂) = θ is called unbiased.

For example, suppose f(x;µ) is any probability distribution
with expectation value µ; then X is an unbiased estimator of µ:

3The situation is different in the field of Bayesian statistics, where prob-
abilities can describe incomplete knowledge (in this case of µ) and not just
randomness.
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E(X) = E

(
1

n

n∑
i=1

Xi

)
=

1

n

n∑
i=1

E(Xi) =
1

n

n∑
i=1

µ

=

n terms︷ ︸︸ ︷
µ+ · · ·+ µ

n
= µ

(1.6)

Similarly, a result from MATH 251 (see for example section 3.4
of http://ccrg.rit.edu/~whelan/courses/2011_4wi_1016_

351/notes05.pdf) shows that the sample variance

S2 =
1

n− 1

n∑
i=1

(Xi −X)2 (1.7)

is an unbiased estimator of the variance σ2 of the underlying
probability distribution from which X1, . . . , Xn, since E(S2) =
σ2. Note, though, that in general E(

√
S2) 6= σ (its actual value

depends on the detailed shape of the probability distribution),
so the sample standard deviation is not an unbiased estimator
of the standard deviation of the probability distribution. (You
will explore a related phenomenon on the homework.)

1.2 Variance of an Estimator

While it’s often possible to find an unbiased estimator, so that
the error θ̂− θ is zero on average, the squared error (θ̂− θ)2 will
generally be positive, so we can consider the average squared
error:

E
(

[θ̂ − θ]2
)

= E

([
(θ̂ − µθ̂) + (µθ̂ − θ)

]2)
= E

(
(θ̂ − µθ̂)

2
)

+ 2(µθ̂ − θ)���
���:

0
E(θ̂ − µθ̂) + (µθ̂ − θ)

2

= V (θ̂) + (µθ̂ − θ)
2 (1.8)

This is the square of the bias of the estimator plus its variance
(as a random variable). So it’s reasonable that we’d like to pick
an estimator with as small a variance as possible, especially if we
limit ourselves to unbiased estimators. In particular, the min-
imum variance unbiased estimator (MVUE) is of some interest
in classical statistics.

It’s easy to see that there can be different unbiased estimators
with different variances. Suppose again that the parameter of
interest is the mean µ. We know the sample mean X is an
unbiased estimator, but there are lots of ways to make unbiased
estimator out of a linear combination of the random variables.
For instance, just taking the first random variable X1 as our
estimator and throwing out the rest of the sample would also
produced an unbiased estimator of µ, since E(X1) = µ. It’s the
variance that sets these choices apart. The variance of X1 is just
the variance of the underlying distribution, V (X1) = σ2. On the
other hand, we know from MATH 251 that V (X) = σ2/n, so X
is an estimator with lower variance than X1.

The square root of the variance of an estimator is known as
its standard error :(

standard error of θ̂
)

=

√
V (θ̂) = σθ̂ (1.9)

Practice Problems

6.11, 6.13, 6.17, 6.19
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2 Methods of Point Estimation

Last time we considered a random sample X1, . . . , Xn drawn
from a distribution described by one or more parameters (e.g., θ)
and considered the properties of an estimator θ̂ = θ̂(X1, . . . , Xn)
constructed from the sample. Now we consider two prescriptions
for constructing estimators.

2.1 Method of Moments

Last time we used the example of the sample mean X as an
estimator for the distribution mean µ. This method can be
extended to cases where the parameter may not be simply real-
izable as a mean, e.g., the rate parameter λ of an exponential
distribution f(x;λ) = λe−λx. In this case, we consider the mean
of the distribution

E(X) =

∫ ∞
−∞

x f(x;λ) dx =

∫ ∞
0

xλ e−λx dx =
1

λ
(2.1)

and define the estimate λ̂ as the value which makes E(X) equal
the actual x observed in the data, i.e.,

1

λ̂
= x (2.2)

or λ̂ = 1/x. The estimator is the corresponding quantity ex-
pressed in terms of the random sample, λ̂ = 1/X.

This method can also be extended to situations where there
are multiple parameters, using moments of the data and the
probability distribution:

(kth moment of data) =
1

n

n∑
i=1

(xi)
k = xk (2.3)

(kth moment of distribution) =

∫ ∞
−∞

xk f(x; θ) dx = E[Xk]

(2.4)
For example, if the distribution is the normal distribution

f(x;µ, σ) =
1

σ
√

2π
e−(x−µ)

2/(2σ2) (2.5)

there are two parameters, so we need the first two moments of
the distribution, which are

E(X) = µ (2.6a)

E(X2) = V (X) + (E(X))2 = σ2 + µ2 (2.6b)

we therefore define the method-of-moments estimates µ̂ and σ̂
by the equations

x = µ̂ (2.7a)

x2 = σ̂2 + µ̂2 (2.7b)

which we can solve for

µ̂ = x (2.8a)

σ̂ =
√
x2 − x2 (2.8b)

Note that the usual shortcut formula means that

σ̂2 =
1

n

n∑
i=1

(xi − x)2 =
n− 1

n
s2 (2.9)

The estimators are then µ̂ = X and σ̂ =
√

n−1
n
S2. Note that

E(σ̂2) =
n− 1

n
E(S2) =

n− 1

n
σ2 (2.10)

So the method of moments estimator (in this case for σ2) need
not be unbiased.
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2.2 Maximum Likelihood Estimation

A widely used method of parameter estimation starts with the
likelihood function. This is actually the joint pdf for the data,
evaluated at the actual data points:

f(x1, . . . , xn; θ) = f(x1; θ) f(x2; θ) . . . f(xn; θ) =
n∏
i=1

f(xi; θ)

(2.11)
we view this as a function of the parameter(s), and choose the
parameter value(s) which make(s) it as large as possible.

To give a concrete example, consider a sample of size n drawn
from an exponential distribution

f(x;λ) = λ e−λx 0 < λ <∞, 0 < x <∞ (2.12)

The likelihood function is

f(x1, . . . , xn;λ) =
(
λ e−λx1

) (
λ e−λx2

)
· · ·
(
λ e−λxn

)
= λne−λ(x1+···+xn)

(2.13)
Now, to find the λ which maximizes this for a particular
x1, . . . , xn, we need to take the derivative of the likelihood func-
tion and set it to zero. Since we’re treating x1, x2, etc as con-
stants, this is technically the partial derivative, and we can cal-
culate it using the product rule:

∂

∂λ
f(x1, . . . , xn;λ)

= nλn−1 e−λ(x1+···+xn) − λn(x1 + · · ·+ xn)e−λ(x1+···+xn)

= [n− λ(x1 + · · ·+ xn)]λn−1 e−λ(x1+···+xn) (2.14)

Since λn−1 and e−λ(x1+···+xn) are both guaranteed to be positive,
the only way to get the derivative to be zero is for the quan-
tity in square brackets to be zero, which gives us the maximum
likelihood estimate

λ̂ =
x1 + · · ·+ xn

n
=

1

x
(2.15)

For due diligence, we should also check that the maximum of
the function is not at the boundary, in this case λ = 0. We
can see that in fact f(x1, . . . , xn; 0) = 0, so λ = 0 is actually
the minimum of the likelihood function, and λ̂ is indeed the
maximum.

It actually turns out to be easier to take the logarithm4 of
the likelihood function first, and then take the derivative. And
the parameter value which maximizes ln f(x1, . . . , xn;λ) will also
maximize f(x1, . . . , xn;λ), so it should give the same result. To
see this in action, we note that for the exponential case,

ln f(x1, . . . , xn;λ) = ln
(
λn e−λ(x1+···+xn)

)
= ln (λn) + ln

(
e−λ(x1+···+xn)

)
= n lnλ− λ(x1 + · · ·+ xn)

(2.16)

Now we can use the sum rule instead of the product rule:

∂

∂λ
ln f(x1, . . . , xn;λ) =

n

λ
− (x1 + · · ·+ xn) (2.17)

Once again the solution is λ̂ = 1/x, which makes the maximum
likelihood estimator λ̂ = 1/X.

2.3 Perspective

The maximum likelihood estimator (MLE) has a number of use-
ful properties. It gives the same estimates for the parameters
even if you change variables (say from variance to standard de-
viation, or from rate parameter λ to scale parameter β = 1/λ).
And while the MLE is not necessarily unbiased, the bias goes
to zero as the sample size gets large, and in fact in the limit of

4This is the natural logarithm, ln, i.e., the logarithm base e. Note that
this will always be defined, since the likelihood function, being constructed
from a pdf, is never negative.
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large sample sizes, the MLE will approach the minimum vari-
ance unbiased estimator (MVUE) discussed in the last class.

It’s tempting to thing of the maximum likelihood estimate as
the most likely parameter value in light of the data, but that’s
not really correct. f({xi}; θ) is a probability distribution for the
data {xi}, not for the parameter θ. In fact, classical statistics
doesn’t even let us define a probability distribution for the fixed
but unknown value of the parameter θ. In Bayesian statistics,
the rules are different, and one can define what’s known as the
posterior probability distribution f(θ|{xi}) for the parameter,
given the observed data. This is defined by a version of Bayes’s
theorem (see Chapter Two of Devore); the likelihood f({xi}; θ)
can be thought of as a conditional distribution for a given value
of θ, so we write it as f({xi}|θ) and the posterior distribution
as

f(θ|{xi}) =
f({xi}|θ) f(θ)

f({xi})
(2.18)

There’s a whole field of statistical inference dealing with this
equation and its consequences. The interesting point here is
that, if the prior probability distribution f(θ) (which encodes
our knowledge about the value of θ before drawing the sample
{xi}) is a constant, then the posterior f(θ|{xi}) is proportional
to the likelihood f({xi}|θ), and so the θ value with the highest
posterior probability (which actually is the most plausible value
given the data) will in fact be the maximum likelihood value.
So this is sort of a backdoor explanation of why the maximum-
likelihood estimate is a reasonable thing.

Practice Problems

6.23, 6.25, 6.29, 6.37
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