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Note that the structure of Chapter 8 has changed somewhat be-
tween the eighth and ninth editions of Devore, due mostly to a
pedagogical choice to make P -values more central to the discus-
sion. As this is a reasonable choice, we’ll be making the same
shift in lecture. For an alternative treatment which introduces P -
values later, see the previous notes at http: // ccrg. rit. edu/

~ whelan/ courses/ 2016_ 3fa_ MATH_ 252/ notes08. pdf

1 Hypothesis Tests (illustrated with

z-tests)

1.1 Overview of Hypothesis Testing

We now consider another area of statistical inference known as
hypothesis testing. The usual formulation starts with a null hy-
pothesis H0 and an alternative hypothesis Ha, which produce
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different probabilistic predictions about the outcome of an ex-
periment, and then, based on the observed data, decides between
two alternatives:

1. Reject H0

2. Don’t reject H0

The full scope of hypothesis testing is quite general, but for this
introduction, we’ll make some simplifying assumptions:

1. The data {Xi} are a sample of size n from a probability
distribution with pdf f(x; θ) (or pmf p(x; θ), if it’s a discrete
distribution).

2. The null hypothesis H0 specifies a single value for the pa-
rameter θ = θ0. (This is known as a “point hypothesis”
because it gives a single value of θ completely specifies the
distribution.)

3. The alternative hypothesis Ha specifies some range of values
for θ which are inconsistent with θ0, typically one of the
following:

(a) θ 6= θ0
(b) θ > θ0
(c) θ < θ0

(Any of these is a “composite hypothesis” because it cor-
responds to a set of θ values, and therefore to a family of
distributions.)

4. The test is defined by constructing a statistic Y =
u(X1, . . . , Xn) and rejecting H0 or not according to the
value of Y .

1.2 Example: z tests for population mean

For example, consider a sample of size n drawn from a normal
distribution with unknown mean µ and known variance σ2. Pre-
viously, we used the fact that the sample mean X is a N(µ, σ2)

random variable to define a pivot variable X−µ
σ/
√
n

which was known

to be standard normal. Now, we’ll evaluate a null hypothesis H0

which says that µ = µ0 where µ0 is some specified value (which
may be zero, but need not be). There are three choices of alter-
native hypothesis Ha: µ 6= µ0, µ > µ0, and µ < µ0. In each case
the test statistic will be

Z =
X − µ0

σ/
√
n

(1.1)

If H0 is true, this is again standard normal [N(0, 1)]. If Ha is
true, Z will still be a normal random variable with a variance
of one, but its mean will be µ−µ0

σ/
√
n
. Depending on the choice

of alternative hypothesis, E(Z) might be known to be positive,
known to be negative, or simply non-zero.

The way we conduct the test is to convert the actual data
{xi} into an actual value z = x−µ0

σ/
√
n

where x is the actual ob-

served sample mean. Since we know that this test statistic Z
is standard normal if the null hypothesis H0 is true, we should
begin to doubt H0 if the observed z is too far from zero. De-
pending on the form of the alternative hypothesis Ha, we could
reject H0 if z were too high, or too low, or perhaps either.

1.3 P -value

The decision to reject the null hypothesis H0 or not is based on
whether the data seem consistent with H0. We quantify that
with something called the P value. This is the probability that
data generated according to the null hypothesis would generate
a test statistic value at least as “extreme” as the actual value
observed.
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1.3.1 Case when Ha: µ > µ0

For concreteness, suppose the alternative hypothesis Ha is that
µ > µ0. Then Ha tells us the test statistic Z is a normal random
variable with a variance of one and a positive mean. Thus a suf-
ficiently high (positive) value of z will look inconsistent with the
null hypothesis H0 and consistent with the alternative hypoth-
esis Ha. (A very negative value of z will look consistent with
neither hypothesis, but more like H0 than Ha.) We define the P
value as the chance of finding a test statistic value of z or higher
if H0 is true:

P = P (Z ≥ z|H0 is true) = 1− Φ(z) = Φ(−z) (1.2)

This is the upper tail probability (Table A.3 of Devore). For
instance, if z = −1, P ≈ 0.8413, but if z = 3, P ≈ 0.0013. The
lower the P value, the more inconsistent the data are with H0.

1.3.2 Case when Ha: µ < µ0

If the alternative hypothesis is µ < µ0, then it’s low values of
Z which are considered anomolous (in a way consistent with
the alternative hypothesis), so the P value corresponding to a z
score is the probability, under the null hypothesis, of finding a
lower (or more negative) value:

P = P (Z ≤ z|H0 is true) = Φ(z) (1.3)

1.3.3 Case when Ha: µ 6= µ0

Now we can consider either high or low z scores to be anomolous,
so the P value is the probability of finding Z farther from zero
than z, assuming the null hypothesis. So if z = 2.5, this is the
probability that Z ≥ 2.5 or Z ≤ −2.5. If z = −1.2, it is the

probability that Z ≤ −1.2 or Z ≥ 1.2. This can be summarized
as

P = P (|Z| ≥ |z| |H0 is true)

= P (Z ≤ − |z| |H0 is true) + P (Z ≥ |z| |H0 is true)

= Φ(− |z|) + (1− Φ(|z|)) = Φ(− |z|) + Φ(− |z|)
= 2Φ(− |z|) (1.4)

1.4 Type I and Type II Errors

To get back to the concept of a test as a way to decide between
rejecting H0 and not rejecting it, this statistic-based method
actually defines a whole family of tests. For any value of α
between 0 and 1, we can define a test which rejects H0 if P ≤ α.
(Recall that lower P values are “worse news” for H0.) The
value α has many names, but a common one is “significance”.
Note that this name can be a bit confusing, because a test with
a significance of α = .01 will be more stringent (require more
evidence to reject H0 than one with a significance of α = .05.

Because of the random nature of the experiment, there will
be some probability that a given test will reject H0. Even if
the null hypothesis H0 is true, we will generally have a non-
zero probability of rejecting it. Likewise, even if the alternative
hypothesis Ha is true, the probability that the data will lead
us to reject H0 will still generally be less than one. A perfect
test would have us never reject H0 if it’s true, and always reject
H0 if Ha is true, but in most situations there is no perfect test.
A given test thus has some probability of making an error. If
H0 is true and we reject it. this is called a Type I Error, also
known as a false alarm. (We have claimed to see an effect which
was not there.) If Ha is true, but we do not reject H0, this is
called a Type II Error, also known as a false dismissal. (We have
failed to find an effect which is there.) The probability of each

3



of these errors happening has to be understood as a conditional
probability (since it assumes one hypothesis or the other is true).
The probability of a type I error, or the false alarm probability,
is

P (reject H0|H0 is true) = P (P ≤ α|H0 is true) (1.5)

Since the definition of the P value implies that, if H0 is true,
it will be a uniform random variable between 0 and 1 (e.g., we
should find P ≤ .2 twenty percent of the time), the false alarm
probability is actually just the significance α:

P (reject H0|H0 is true) = P (P ≤ α|H0 is true) = α (1.6)

The probability of a type II error, or the false dismissal proba-
bility, is

β = 1− P (reject H0|Ha is true) (1.7)

Actually, since we’re taking the alternative hypothesis Ha to be
a composite hypothesis, this depends on the actual value of θ:

β(θ) = 1− P (reject H0|parameter value θ) (1.8)

We’d generally like to have α and β as small as possible. In
practice, one usually decides what false alarm probability α one
can afford, and then designs a test which minimizes β(θ) for any
θ given that constraint.

A related quantity is the power of the test, which is the prob-
ability of rejecting H0 if Ha is true. It is written γ(θ) and equal
to 1− β(θ).

1.5 Specifics of z test

Returning to the case where we have a sample of size n drawn
from a normal distribution (or population) with unknown mean
µ and known variance σ2, and null hypothesis H0: µ = µ0, we

consider the threshold on Z = X−µ0
σ/
√
n

corresponding to a desired

false alarm probability α. As noted, this corresponds in each
case to a test which rejects H0 if P ≤ α. Since

P = 1− Φ(z) = P (Z ≥ z|H0 is true) (1.9)

and 1 − Φ(zα) = α by definition, the threshold of α on P is a
threshold of zα on z. Similar calculations in the other two cases
tell us:

1. If Ha is µ > µ0, we reject H0 if X−µ0
σ/
√
n
> zα. This is called

an upper-tailed test.

2. If Ha is µ < µ0, we reject H0 if X−µ0
σ/
√
n
< −zα. This is called

a lower-tailed test.

3. If Ha is µ 6= µ0, we reject H0 if either X−µ0
σ/
√
n
< −zα/2 or

X−µ0
σ/
√
n
> zα/2. This is called a two-tailed test.

Practice Problems

8.1, 8.7, 8.9, 8.13, 8.19

Tuesday 6 February 2018

1.6 False Dismissal Probability

To get the false dismissal probability β(µ), or equivalently the
power γ(µ) = 1 − β(µ), we need to consider the probability of
the sample landing in the rejection region for a given µ = µ′

consisted with the alternative hypothesis Ha. In the case of a

normal distribution with known σ, the test statistic Z = X−µ0
σ/
√
n

will still be normally distributed, but now, since X ∼ (µ′, σ2/n),
the mean of Z will be µ′−µ0

σ/
√
n

. (The variance will still be 1.) Thus,
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if Ha is µ > µ0

β(µ′) = P

(
X − µ0

σ/
√
n
≤ zα

∣∣∣∣µ= µ′
)

= Φ

(
zα −

µ′ − µ0

σ/
√
n

)
(1.10)

while if Ha is µ < µ0

β(µ′) = P

(
X − µ0

σ/
√
n
≥−zα

∣∣∣∣µ = µ′
)

= 1− Φ

(
−zα −

µ′ − µ0

σ/
√
n

)
= Φ

(
zα −

µ0 − µ′

σ/
√
n

)
(1.11)

Note that Φ(zα) = 1− α, and in each case the argument is less
than zα, so β(µ′) < 1− α, which means γ(µ′) > α. This makes
sense, since you’d expect the test to be more likely to reject H0

if Ha is true than if H0 is true.
For a two-tailed test, the calculation of the false dismissal

probability is also straightforward:

β(µ′) = P

(
−zα/2 ≤

X − µ0

σ/
√
n
≤ zα/2

∣∣∣∣µ = µ′
)

= Φ

(
zα/2 −

µ′ − µ0

σ/
√
n

)
− Φ

(
−zα/2 −

µ′ − µ0

σ/
√
n

) (1.12)

1.7 Sample Size Determination

We can turn the false dismissal probability expressions for one-
tailed tests around, and ask what sample size n will allow us
to produce a test with a specified false alarm probability α and
false dismissal probability β for a nominal population mean µ′.
We use the fact that

β = 1− Φ(zβ) = Φ(−zβ) , (1.13)

which means that

−zβ =

{
zα − µ′−µ0

σ/
√
n

upper tailed

zα − µ0−µ′
σ/
√
n

lower tailed
(1.14)

In either case if we solve for n we get the minimum sample size

n =

(
σ(zα + zβ)

µ′ − µ0

)2

(1.15)

2 t-tests (unknown variance)

Now suppose we have a sample of size n drawn from a normal
distribution, but both the mean and the variance is unknown.
If we want to assess the null hypothesis H0: µ = µ0, we can’t

construct the usual test statistic X−µ0
σ/
√
n

because the standard de-

vation σ is unknown. As in the case of confidence intervals,
we use the sample variance as an estimate. The resulting test
statistic

T =
X − µ0√
S2/n

(2.1)

is Student-t-distributed with n− 1 degrees of freedom. (Again,
this is a consequence of Student’s Theorem.) We then reject
the null hypothesis if the statistic T is too far from zero in the
appropriate direction. Specifically, if we want to define tests at
a fixed significance α, they go as follows:

1. If Ha is µ > µ0, we reject H0 if T > tα;n−1.

2. If Ha is µ < µ0, we reject H0 if T < −tα;n−1.
3. If Ha is µ 6= µ0, we reject H0 if either T < −tα/2;n−1 or
T > tα/2;n−1.

To describe the outcome in terms of the P -value, we need to
use the cumulative distribution function of the t-distribution,
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FT (t;n−1) or equivalently the tail probability (area to the right
of t 1− FT (t;n− 1) = FT (−t;n− 1). Then, defining t = x−µ0

s/
√
n
,

1. If Ha is µ > µ0, P = FT (−t;n− 1) =
∫∞
t
fT (u;n− 1) du

2. If Ha is µ < µ0, P = FT (t;n− 1) =
∫ t
−∞ fT (u;n− 1) du

3. If Ha is µ 6= µ0, P = 2FT (− |t| ;n− 1) =
∫∞
|t| fT (u;n− 1) du

Devore has the t tail probability∫ ∞
t

fT (u; ν) du (2.2)

for various numbers of degrees of freedom tabulated.

Note that the false dismissal probability β(µ) (or the power
γ(µ) = 1− β(µ)) is not so easy to calculate for a t-test. This is

because T = X−µ0√
S2/n

doesn’t have a simple probability distribu-

tion when µ 6= µ0.

2.1 Large-Sample Approximation

As with confidence intervals, we can take advantage of the fact
that, as the number of degrees of freedom becomes large, the
Student-t distribution approaches the standard normal distri-
bution. So if n > 40 or so, we can assume the test statistic
X−µ0√
S2/n

is approximately standard normal (in fact, it’s common

to call it Z rather than T in this case) and

1. If Ha is µ > µ0, then P ≈ 1− Φ(x−µ0
s/
√
n
) and we reject H0 if

X−µ0√
S2/n

> zα.

2. If Ha is µ < µ0, then P ≈ Φ(x−µ0
s/
√
n
) and we reject H0 if

X−µ0√
S2/n

< −zα.

3. If Ha is µ 6= µ0, then P ≈ 2Φ(−|x−µ0
s/
√
n
|) and we reject H0 if

either X−µ0√
S2/n

< −zα/2 or X−µ0√
S2/n

> zα/2.

Thanks to the central limit theorem, we don’t even need to know
that the underlying distribution is normal in the large-sample
case. As long as it has a finite variance, the test statistic based
on X and S2 will be approximately standard normal.

3 Hypothesis Tests and Confidence

Intervals

You may have noticed that the procedures involved in conduct-
ing a hypothesis test at specified significance α and construct-
ing a confidence interval of specified confidence level 1 − α are
similar. Let’s examine that more closely, using the example of
a sample of size n drawn from a normal distribution with un-
known µ and σ. The two-sided confidence interval will then be

from x− tα/2,n−1
√
s2/n to x+ tα/2,n−1

√
s2/n (3.1)

On the other, hand the rules of a two-tailed hypothesis test say

Reject H0 if
x− µ0√
s2/n

≥ tα/2,n−1 or
x− µ0√
s2/n

≤ −tα/2,n−1

(3.2)
or equivalently

Reject H0 unless − tα/2,n−1 <
x− µ0√
s2/n

< tα/2,n−1 (3.3)

A little bit of algebra shows this is equivalent to

RejectH0 unless x−tα/2,n−1
√
s2/n < µ0 < x+tα/2,n−1

√
s2/n
(3.4)
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I.e., you reject the null hypothesis if the specified value µ0 lies
outside the corresponding confidence interval.

Practice Problems

8.31, 8.37, 8.39, 8.55

Thursday 8 February 2018

4 Tests Concerning Proportion

Now we turn once again to the case of a binomial-type experi-
ment, e.g., sampling n members from a large population where
some fraction (or proportion) p of the members have some de-
sired trait, or doing n independent trials with a probability p for
success on each trial. As usual, the language about sample and
random variables is a little different. We could consider this to
be a sample of size n from a Bernoulli distribution Bin(1, p), or
a single binomial random variable X ∼ Bin(n, p). In any event,
it’s more convenient to work with the estimator p̂ = X/n, which
has mean

E(p̂) =
np

n
= p (4.1)

and variance

V (p̂) =
np(1− p)

n2
=
p(1− p)

n
(4.2)

We can consider two regimes when testing a null hypothesis
H0 which states p = p0: if np0 & 10 and n(1− p0) & 10, we can
treat the distribution of p̂ as approximately normal with the
mean and variance given above, which means we can use the
testing procedures already defined. If not, we need to use the
binomial cumulative distribution function to define and evaluate
the tests.

4.1 Large Sample Tests

Supposing the normal approximation to be valid, the test statis-
tic appropriate when the null hypothesis H0 is p = p0 will be

Z =
p̂− p0√

p0(1− p0)/n
(4.3)

since p̂ is approximately N(p0, p0(1− p0)/n), Z will be approx-
imately standard normal, This means

P

(
p̂− p0√

p0(1− p0)/n
> zα

∣∣∣∣∣µ= µ0

)
≈ α (4.4a)

P

(
p̂− p0√

p0(1− p0)/n
<−zα

∣∣∣∣∣µ= µ0

)
≈ α (4.4b)

and

P

([
p̂− p0√

p0(1− p0)/n
<−zα/2

]⋃[
p̂− p0√

p0(1− p0)/n
> zα/2

]∣∣∣∣∣µ= µ0

)
≈ α (4.4c)

That makes the large-sample tests

1. If Ha is p > p0, we reject H0 if p̂−p0√
p0(1−p0)/n

> zα.

2. If Ha is p < p0, we reject H0 if p̂−p0√
p0(1−p0)/n

< −zα.

3. If Ha is p 6= p0, we reject H0 if either p̂−p0√
p0(1−p0)/n

< −zα/2
or p̂−p0√

p0(1−p0)/n
> zα/2.

4.1.1 False Dismissal Probability

Estimating β(p′) for these tests as a function of the actual pro-
portion p′ is a little different than in the case of a population
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mean, since now the variance depends on the parameter p′ as
well, i.e., if p = p′, we know E(p̂) = p′ and V (p̂) = p′(1− p′)/n,
so

E(Z) =
p′ − p0√

p0(1− p0)/n
(4.5)

and

V (Z) =
p′(1− p′)/n
p0(1− p0)/n

=
p′(1− p′)
p0(1− p0)

(4.6)

So for example if Ha is p > p0, we have false dismissal probability

β(p′) = P (Z ≤ zα| p= p′) = Φ

(
zα − (p′ − p0)/

√
p0(1− p0)/n√

[p′(1− p′)]/[p0(1− p0)]

)

= Φ

(
zα
√
p0(1− p0)/n− (p′ − p0)√

p′(1− p′)/n

)
(4.7)

4.2 Small Sample Tests

If the sample size is too small (or p0 is to close to zero or one)
to use the normal trick, we basically have to construct the test
using the binomial cdf

B(x;n, p) =
x∑
y=0

b(x;n, p) =
x∑
y=0

(
n

x

)
px(1− p)n−x (4.8)

In practice we won’t actually evaluate the sum; we’ll look it up
in a table or ask a statistical software package to do it for us.

A test which rejects H0 when X ≥ c, i.e., p̂ ≥ c/n, appropriate
for alternative hypothesis Ha: p > p0, will have a false alarm
probability of

α = P (X≥c|p=p0) = 1−P (X≤c−1|p=p0) = 1−B(c−1;n, p0)
(4.9)

and similarly for lower-tailed and two-tailed test. In general, we
won’t be able to produce a test with exactly the desired false
alarm probability, but we can pick one which is close.

Practice Problems

8.35, 8.39, 8.43, 8.45
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