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Thus far we’ve considered inferences (confidence intervals and
hypothesis tests) for a sample of data assumed to be drawn from
a single distribution. It’s often the case, though, that we have
multiple samples of data drawn from different distributions, and
we’re interested in the relationships between those distributions
(for example, how the means of the distributions are related).
We now turn to so-called two-sample inferences.

1 Two-Sample Z Tests

As a simple starting point, suppose we have a sample of size m
drawn from a distribution with mean µ1 and variance σ2

1, which
we’ll call {Xi} when thinking of it as a random sample or {xi}
when dealing with the actual data values, and another sample of
size n, drawn from a distribution with mean µ2 and variance σ2

2,
which we call {Yj} or {yj}. We’re interested in inferences about
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the difference between the two means µ1 and µ2. For instance
we may be considering the heights in cm of men and women,
and want to know, based on a finite sample, how the average
heights for men and women compare.

This sort of problem seems like it could be complicated, since
the size of the two samples need not be the same, but we
know that for one-sample inferences that we can summarize
the data using the sample mean, so we construct the means
X = 1

m

∑m
i=1Xi and Y = 1

n

∑n
j=1 Yj, and consider the behavior

of X − Y . We know that E(X) = µ1, E(Y ) = µ2, V (X) = σ2
1,

and V (Y ) = σ2
2, and assuming all the random variables in the

samples to be independent random variables, the statistics X
and Y should also be independent, which means

E(X − Y ) = E(X)− E(Y ) = µ1 − µ2 (1.1a)

V (X − Y ) = V (X) + (−1)2V (Y ) =
σ2
1

m
+
σ2
2

n
(1.1b)

1.1 Normal with Known Variances

In the simplest case, we know the samples to be both drawn
from normal distributions, and we know the variances. Then we
know X and Y are independent normally-distributed random
variables, which means X − Y is normally distributed with the
mean and variance given above, and

Z =
X − Y − (µ1 − µ2)√

(σ2
1/m) + (σ2

2/n)
(1.2)

is standard normal distributed. That means we can do all of the
usual standard-normal inferences. For example:

1. A 100(1− α)% confidence interval on µ1 − µ2 is

x−y−zα/2
√

(σ2
1/m) + (σ2

2/n) to x−y+zα/2

√
(σ2

1/m) + (σ2
2/n)

(1.3)

2. A 100(1− α)% upper bound on µ1 − µ2 is

x− y + zα

√
(σ2

1/m) + (σ2
2/n) (1.4)

3. A 100(1− α)% lower bound on µ1 − µ2 is

x− y − zα
√

(σ2
1/m) + (σ2

2/n) (1.5)

If we construct the Z-statistic

z =
x− y −∆0√

(σ2
1/m) + (σ2

2/n)
(1.6)

it can be used to test the hypothesis H0: x− y = ∆0 at signifi-
cance level (false alarm probability) α:

1. Against the alternative hypothesis Ha: x− y > ∆0 with an
upper-tailed test which rejects H0 if z > zα

2. Against the alternative hypothesis Ha: x − y < ∆0 with a
lower-tailed test which rejects H0 if z < −zα

3. Against the alternative hypothesis Ha: x − y 6= ∆0 with a
lower-tailed test which rejects H0 if |z| > zα/2

Likewise, the P value for H0 is

1. If Ha is x− y > ∆0,

P = 1− Φ

(
x− y −∆0√

(σ2
1/m) + (σ2

2/n)

)
(1.7)

2. If Ha is x− y < ∆0,

P = Φ

(
x− y −∆0√

(σ2
1/m) + (σ2

2/n)

)
(1.8)

3. If Ha is x− y 6= ∆0,

P = 2Φ

(
− |x− y −∆0|√

(σ2
1/m) + (σ2

2/n)

)
(1.9)
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1.2 Large Samples

If we don’t know the variances σ2
1 and σ2

2, we can try to estimate
them from the data using the sample variances

s21 =
1

m− 1

m∑
i=1

(xi − x)2 (1.10a)

s22 =
1

n− 1

n∑
j=1

(yj − y)2 (1.10b)

As usual, if n and m are large (each & 40), we can invoke the
central limit theorem and find that the statistic

Z =
X − Y − (µ1 − µ2)√

(S2
1/m) + (S2

2/n)
(1.11)

is approximately standard normal, and all of the same inferences
go through as before.

Practice Problems

9.3, 9.7, 9.15

Thursday 15 February 2018

Review for Prelim Exam One (Chapters 6-8). Please bring ques-
tions, and ideally ask them by email before class.

Tuesday 20 February 2018

Prelim Exam One (Chapters 6-8). Closed book, closed notes,
but you may bring one handwritten 8.5”×11” (front and back)
formula sheet, and also use a scientific calculator.

Thursday 22 February 2018

2 Two-Sample T Tests

As usual, things are somewhat more complicated if the sample
size is not large. We can still use the same statistic as before,

T =
X − Y − (µ1 − µ2)√

(S2
1/m) + (S2

2/n)
(2.1)

but now what we can say is, if the two populations are normal,
this will obey a Student t distribution, and we have to use per-
centiles tα,ν . The number of degrees of freedom ν to use is a
somewhat complicated question, however. Before quoting the
answer, we consider a slightly modified scenario.

2.1 Pooled T Tests (Student-t Tests)

Suppose we know that the two populations have the same vari-
ance σ2

1 = σ2
2 = σ2 but we still don’t know what that common

variance is. The statistic

Z =
X − Y − (µ1 − µ2)√

(σ2
1/m) + (σ2

2/n)
=
X − Y − (µ1 − µ2)√

σ2
(

1
m

+ 1
n

) (2.2)

would be standard normal, but we can’t construct it without
the value of σ2. An obvious estimator of σ2 which combines all
the data would be proportional to

m∑
i=1

(Xi −X)2 +
n∑
j=1

(Yj − Y )2 = (m− 1)S2
1 + (n− 1)S2

2 (2.3)

We know that this estimator would have expectation value

(m− 1)σ2 + (n− 1)σ2 = (m+ n− 2)σ2 (2.4)
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so to get an unbiased estimator of σ2 we would construct

S2
p =

(m− 1)S2
1 + (n− 1)S2

2

m+ n− 2
(2.5)

and define the “pooled t statistic”

T =
X − Y − (µ1 − µ2)√

S2
p

(
1
m

+ 1
n

) (2.6)

Given the normalization of the estimator, it shouldn’t be too
surprising that this statistic ends up obeying a Student t distri-
bution with m+ n− 2 degrees of freedom.

2.2 General 2-Sample T tests (Welch-t tests)

If we don’t know σ1 and σ2 to be the same, we return to the
statistic

T =
X − Y − (µ1 − µ2)√

(S2
1/m) + (S2

2/n)
(2.1)

It turns out this can be approximated as a t-distributed random
variable with a number of degrees of freedom ν estimated from
the data:

1

ν
≈

S41
ν1

+
S42
ν2

(S2
1 + S2

2 )2
(2.7)

where ν1 = m − 1 and ν2 = n − 1 are the degrees of freedom
associated with the variance estimates from the first and second
samples, and S2

1 = s21/m and S2
2 = s22/n are the standard errors

estimated for X and Y . (Devore says to round down to an
integer number of df, which will make things more conservative,
but is probably only necessary because there are no t tail tables
for non-integer ν.)

We can note some limits here:

• If S1 = S2,
1

ν
=

1

4ν1
+

1

4ν2
(2.8)

If ν1 = ν2 as well, which means m = n and s1 = s2, this
reduces to ν = 2ν1 = 2n− 2, which is the same number of
degrees of freedom as in a pooled T test.

• If S1 � S2,
1

ν
≈ 1

ν1
(2.9)

In general, the number of degrees of freedom will be less than
in the pooled T case, ν ≤ ν1 + ν2.

Practice Problems

9.17, 9.19, 9.33

Tuesday 27 February 2018

3 Inferences from Paired Data

So far, we’ve considered cases where the samples X1, . . . Xm and
Y1, . . . Yn were independent of each other (and could have differ-
ent sample sizes). In terms of a joint distribution, this meant

f(x1, . . . , xm, y1, . . . , ym) = f1(x1) · · · f1(xm)f2(y1) · · · f2(yn)
(3.1)

Now we consider paired data, in which we have two samples–
X1, . . . , Xn and Y1, . . . , Yn–of the same size, in which the corre-
sponding members of the two samples need not be independent
of each other. I.e., X1 is not independent of Y1, X2 is not inde-
pendent of Y2, etc. We’re really thinking of a sample of size n
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from a bivariate distribution with joint pdf f(x, y), so that

f(x1, . . . , xm, y1, . . . , ym) = f(x1, y1) · · · f(xn, yn) (3.2)

For example, suppose we are trying to test the hypothesis that
the right arms of most people are better developed than the
left arms. We could collect measurements of the bicep circum-
ference in centimeters, but the variability in the arm sizes of
different people is likely to be a lot bigger than the typical dif-
ference between left arm and right arm sizes. So rather than
throwing all the left arm measurements together and all the
right arm measurements together and pretending they’re uncor-
related, it makes a lot more sense to keep track of the left and
right arm measurements from each person. And it’s a more ac-
curate description to think about the data as being represented
by correlated pairs of random variables.

Thinking about the properties of the joint distribution f(x, y),
we can talk about the means µ1 = E(Xi) and µ2 = E(Yi),
variances σ2

1 = V (Xi), σ
2
2 = V (Yi), and covariance ρσ1σ2 =

Cov(Xi, Yi).
1 If we’re interested in µ1 − µ2, we should work

with the differences of the paired random variables from the two
samples, Di = Xi − Yi, which has expectation value

µD = E(Di) = E(Xi − Yi) = E(Xi)− E(Xi) = µ1 − µ2 (3.3)

and variance

σ2
D = V (D) = V (Xi − Yi) = V (Xi) + V (Yi)− 2 Cov(Xi, Yi)

= σ2
1 + σ2

2 − 2ρσ1σ2
(3.4)

For the inferences we’re going to do, we could really just treat
D1, . . . Dn as the random sample and forget about {Xi} and

1Note, it’s important that the index on both random variables be the
same in Cov(Xi, Yi). We have Cov(X3, Y3) = ρσ1σ2 but Cov(X2, Y5) = 0.

{Yi}, but it’s nice to touch base with the original variables from
time to time to compare the paired procedure to the old two-
sample procedures. With that in mind, our statistics should be
built around the sample mean

D =
1

n

n∑
i=1

Di (3.5)

(which happens to equal X − Y because everything is linear)
and the sample variance

S2
D =

1

n− 1

n∑
i=1

(Di −D)2 (3.6)

(which cannot be written in terms of S2
1 and S2

2 alone). The
inferences are all then based on the statistic

T =
D − µD√
S2
D/n

; (3.7)

If the distribution f(x, y) is a bivariate Gaussian2, then T will
be Student-t distributed with n−1 degrees of freedom; if n & 40,
then T will be approximately standard normal distributed.

3.1 Paired vs 2-Sample Inference

Note that the paired procedure attempts to estimate

Var(D) = Var(X − Y ) =
σ2
D

n
=
σ2
1

n
+
σ2
2

n
− 2ρ

σ1√
n

σ2√
n

(3.8)

2The pdf f(x, y) is straightforward but a little too long when written out
explicitly, but the statement is equivalent to X and Y being different linear
combinations of the same pair of independent Gaussian random variables.
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when constructing the T statistic. If we recall the two-sample
inference, in the case where n = m, the variance of the difference
of sample means is assumed to be

σ2
1

n
+
σ2
2

n
(3.9)

(because the construction assumes there’s no correlation). So
in the case of positive correlation ρ > 0, we’re probably over-
estimating the standard error on the difference of the sample
means if we (incorrectly) assume the data to be uncorrelated.
Note that the paired procedure also ends up with a different
number of degrees of freedom, n− 1, than the two-sample one,
which has

ν = (n− 1)

(
(s21 + s22)

2

s41 + s42

)
= (n− 1)

(
s41 + s42 + 2s21s

2
2

s41 + s42

)
= (n− 1)

(
1 +

2s21s
2
2

s41 + s42

) (3.10)

which will be somewhere between 1 and 2 times n−1 depending
on the relative sizes of the sample variances. So the paired
test also has fewer degrees of freedom than the two-sample test,
which will make e.g., confidence intervals slightly broader given
the same standard error estimate, and thus tend to counteract
the underestimation described above.

Practice Problems

9.37, 9.41, 9.45

Thursday 1 March 2018

4 Inferences for the Difference of

Population Proportions

As in the one-sample case, one of the more interesting inferences
we can consider concerns a comparison between population pro-
portions. In this case we have two binomial random variables
X ∼ Bin(m, p1) and Y ∼ Bin(n, p2), and would like to know
something about how the proportions p1 and p2 compare based
on the observed values of X and Y . We can also think of X
and Y as the respective sums of samples drawn from indepen-
dent Bernoulli distributions, which is why these single binomial
random variables are the correct analogues of sample means
in other cases. In fact, the respective means of the Bernoulli
samples would be unbiased estimators of the two proportions:
p̂1 = X/m and p̂2 = Y /n satisfy

E(p̂1) =
E(X)

m
=
mp1
m

= p1 (4.1)

and similarly E(p̂2) = p2. The variances are then

V (p̂1) =
V (X)

m2
=
mp1(1− p1)

m2
=
p1(1− p1)

m
(4.2)

and likewise V (p̂2) = p2(1−p2)
n

In the interest of simplicity, we consider the case where the
normal approximation applies (mp1, m(1−p1), np2, and n(1−p2)
are all & 10), and construct inferences about the difference p1−
p2. (E.g., we might want to estimate how much greater a vote
share a Republican presidential candidate would have in Arizona
than in New Mexico.) We can then treat the estimators p̂1 and p̂2
as approximately normal, and, again using independence of the
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samples, treating their difference as a normal random variable
with mean p1 − p2 and variance

V (p̂1 − p̂2) = V (p̂1) + (−1)2V (p̂2) =
p1(1− p1)

m
+
p2(1− p2)

n
(4.3)

Thus we can construct an approximately standard normal statis-
tic

Z =
(p̂1 − p̂2)− (p1 − p2)√

p1(1−p1)
m

+ p2(1−p2)
n

(4.4)

4.1 Large-Sample Confidence Interval

The most straightforward application of this statistic is as a
pivot variable in constructing a coinfidence interval. The most
straightforward construction shows that

1− α ≈ P

(
p̂1 − p̂2 − zα/2

√
p1q1
m

+
p2q2
n

<p1 − p2 < p̂1 − p̂2 + zα/2

√
p1q1
m

+
p2q2
n

) (4.5)

where we have defined q1 = 1 − p1 and q2 = 1 − p2. Now of
course if we knew p1 and p2, we wouldn’t have to construct a
confidence interval, but we can use the estimates p̂1 = x/m
and p̂2 = y/n in their place, and if we’re in the large sample
limit, the normal percentiles will still be appropriate, giving us
a confidence interval with endpoints

p̂1 − p̂2 ± zα/2

√
p̂1q̂1
m

+
p̂2q̂2
n

(4.6)

4.1.1 Comment on a Comment

Devore makes the offhand comment that “recent research has
shown” that better results can be obtained by replacing the

estimate
p̂1 − p̂2 =

x

m
− y

n
(4.7)

with
x+ 1

m+ 2
− y + 1

n+ 2
(4.8)

basically pretending that each experiment had had an extra suc-
cess and failure. This is actually a very old point of debate
predating classical statistics itself. If you consider just a single
binomial experiment leading to random variable Y ∼ Bin(n, p),
the obvious unbiased estimator

p̂ =
Y

n
(4.9)

has the problem that it evaluates to exactly zero if the results
happened to include no successes, or one if they include no fail-
ures. But that sort of absolutism is a bad idea when predict-
ing future outcomes, and for instance causes estimates of the
standard error to go to zero. (Although p(1 − p)/n presum-
ably doesn’t vanish, p̂(1− p̂)/n will in this case.) Pierre-Simon
Laplace suggested the y+1

n+2
estimate back in the early 19th cen-

tury, and it’s often known as the Bayes-Laplace Rule of Succes-
sion. In the Bayesian framework, it’s the most likely value for p
after the experiement if you assume a priori that all values are
equally likely.

4.2 Large-Sample Hypothesis Tests

The need to estimate the variance of the estimator p̂1− p̂2 com-
plicates the standard approach to hypothesis testing. One could
follow the same approach as in confidence interval construction,
and define a test statistic corresponding to a null hypothesis ∆0

z =
p̂1 − p̂2 −∆0√

p̂1q̂1
m

+ p̂2q̂2
n

if ∆0 6= 0 (4.10)
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However, it is often the case that the null hypothesis is ∆0 (the
two proportions are the same) and in this case we can do a little
better estimating the denominator of (4.4). We’re interested in
a statistic which is approximately standard normal when p1 =
p2 = p. In that scenario, X ∼ Bin(m, p) and Y ∼ Bin(n, p)
which means that X + Y ∼ Bin(m+ n, p), i.e., we can combine
the two success counts into the results of a m+n binomial trials.
Thus the best estimator is

p̂ =
X + Y

m+ n
=
mp̂1 + np̂2
m+ n

(4.11)

i.e., a weighted average of the two estimators. This we can use
the statistic value

z =
p̂1 − p̂2√
p̂q̂
(

1
m

+ 1
n

) if ∆0 = 0 (4.12)

This can be used to construct P -values and perform tests at a
specified significance.

4.2.1 False Dismissal Probability

To get the approximate probability of a type II error (false dis-
missal) in the case where the null hypothesis H0 is not satisfied,
we need to specify assumed values for p1 and p2 (not just their
difference). We have to wave our hands a little even to get the
expectation value of the statistic

Z =
p̂1 − p̂2√
p̂q̂
(

1
m

+ 1
n

) (4.13)

We’ll assume that for large samples we can replace

p̂ =
mp̂1 + np̂2
m+ n

(4.14)

in the denominator of Z with its expectation value

p =
mp1 + np2
m+ n

(4.15)

and thus write

E(Z) ≈ p1 − p2√
p q
(

1
m

+ 1
n

) (4.16)

by the same token, we assume

V (Z) ≈ V (p̂1) + V (p̂2)

p q
(

1
m

+ 1
n

) =
p1q1
m

+ p2q2
n

p q
(

1
m

+ 1
n

) (4.17)

This can then be used to estimate the false dismissal probability
for a test of false alarm probability α as a function of p1 and p2.
For instance, if we have an upper-tailed test which rejects H0:
p1 = p2 when Z > zα, this will fail to reject H0 with probability

β(p1, p2) = P (Z ≤ zα) = Φ

(
zα − E(Z)√

V (Z)

)

= Φ

zα
√
p q
(

1
m

+ 1
n

)
− (p1 − p2)√

p1q1
m

+ p2q2
n

 (4.18)

Practice Problems

9.49, 9.55, 9.57

Tuesday 6 March 2018

5 Two-Sample F Tests

As our final class of two-sample inference, we consider the com-
parison of the variances of two distributions given samples drawn
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from each. Specifically, suppose {X1, . . . , Xm} is a sample drawn
from a N(µ1, σ

2
1) distribution and {Y1, . . . , Yn} is a sample drawn

from a N(µ2, σ
2
2) distribution, where µ1 and µ2 are unknown

but not of interest, and we want to know about σ2
1 and σ2

2, e.g.,
whether they’re equal or not. Recall from our study of confi-
dence intervals for a single population variance that

U1 =
m∑
i=1

(Xi −X)2

σ2
1

= (m− 1)S2
1/σ

2
1 (5.1)

is a chi-square random variable with ν1 = m − 1 degrees of
freedom, and likewise U2 = (n − 1)S2

2/σ
2
2 ∼ χ2(ν2) where ν2 =

n−1. For once, we’re going to do things a bit differently and not
try to produce an estimator for σ2

1 − σ2
2. The reason is because

σ is what we call a scale parameter in the normal distribution,
which means that it’s most natural to multiply and divide by it
rather than adding and subtracting. So we’re more interested
in inferences concerning σ2

1/σ
2
2 (or σ1/σ2). It turns out that if

we construct the statistic

F =
U1/ν1
U2/ν2

=
S2
1

S2
2

σ2
2

σ2
1

(5.2)

it obeys something called an F -distribution with degree-of-
freedom parameters ν1 = m − 1 and ν2 = n − 1. The PDF
of the F-distribution has the form

f(t; ν1, ν2) ∝ t
ν1
2
−1
(
ν1
ν2
t

)−( ν1+ν2
2 )

(5.3)

and looks like this

0 1 2 3 4 5

x

f F
(x
;ν

1
,ν

2
)

ν1 = 5, ν2 = 5

ν1 = 5, ν2 = 10

ν1 = 10, ν2 = 5

ν1 = 10, ν2 = 10

but what’s important is that the percentiles and cdf values of
this distribution are available in statistical computing programs
as well as to a limited extent in statistical tables. The percentiles
are defined by the notation Fα,ν1,ν2 , so that

P (F > Fα,ν1,ν2 ; ν1, ν2) = α (5.4)

This is tabulated for assorted values of α, ν1 and ν2. The distri-
bution is not symmetric, so in particular F1−α,ν1,ν2 6= −Fα,ν1,ν2 .
However, if we look at the definition (5.2), we see that if F is an
F -distributed random variable with ν1 and ν2 degrees of free-
dom, then 1/F will be an F -distributed random variable with
ν2 and ν1 degrees of freedom. Thus

α = P (F < F1−α,ν1,ν2 ; ν1, ν2) = P

(
1

F
< F1−α,ν1,ν2 ; ν2, ν1

)
= P

(
F >

1

F1−α,ν1,ν2
; ν2, ν1

)
= P (F > Fα,ν2,ν1 ; ν2, ν1)

(5.5)
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Thus F1−α,ν1,ν2 = 1/Fα,ν2,ν1 . So for example if we want the 5th
percentile F.95,5,10, this is 1/F.05,10,5 ≈ 1/4.74 ≈ .211 where 4.74
comes from table A.9 in Devore. We can confirm this using the
SciPy stats package:

In [1]: from scipy import stats

In [2]: print stats.f.isf(.95,5,10)

0.211190428782

So if we wish to test the null hypothesis H0: σ1 = σ2, we can
construct the test statistic

F =
S2
1

S2
2

(5.6)

If we want to get a test of H0 versus Ha: σ1 > σ2 with confidence
level α, we reject H0 if s21s

2
2 > Fα,m−1,n−1. For instance, if m = 6

and n = 11, so ν1 = 5 and ν2 = 10 as above, we reject H0 at
the 5% level if the ratio of the sample variances is greater than
F.05,5,10 ≈ 3.20. On the other hand, we can reject it at the 1%
level if s21s

2
2 > F.01,5,10 ≈ 5.32. We could also ask, suppose the

ratio of the sample variances is 4.00 (so the ratio of the sample
standard deviations is 2; what is the P -value. This should be
P (F > 4.00; 5, 10), but the practical problem is that the cdf is
not tabulated. So from the tables in Devore, all we can say is
that P is between 1% and 5%. This is kind of a silly distinction,
though, since after all, statistical software packages have the cdf
avaiable:

In [3]: print stats.f.sf(4,5,10)

0.0296752952221

so in fact the P -value is 3.0%.

5.1 Confidence Intervals

We can also use the F distribution to set a confidence interval
on the ratio of the variances, using the fact that

1− α = P

(
F1−α/2,m−1,n−1 <

S2
1

S2
2

σ2
2

σ2
1

< Fα/2,m−1,n−1

)
= P

(
1

Fα/2,n−1,m−1
<
S2
1

S2
2

σ2
2

σ2
1

< Fα/2,m−1,n−1

)
= P

(
1

Fα/2,m−1,n−1

S2
1

S2
2

<
σ2
1

σ2
2

< Fα/2,n−1,m−1
S2
1

S2
2

) (5.7)

Up Next

Note that we will skip chapters 10 and 11 on the Analysis of
Variance (ANOVA) and proceed next week with chapter 12, on
regression.

Practice Problems

9.59, 9.61, 9.65
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