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1 Nonparametric Hypothesis Tests

Most of the hypothesis tests we’ve considered so far have as-
sumed samples drawn from some underlying distribution or dis-
tributions, and made statements about the parameters of those
distributions. Now we consider a couple of techniques designed
to make more general statements with fewer assumptions about
the distributions in question.

∗Copyright 2018, John T. Whelan, and all that

1.1 The Wilcoxon Rank Sum Test

Note: This test is in Section 15.2 of Devore

Consider the pooled t-test, which we covered in our study
of two-sample inference (Chapter 9). It was designed to han-
dle two samples X1, . . . , Xm and Y1, . . . , Yn which were assumed
to be drawn from normal distributions N(µ1.σ

2), respectively
N(µ2.σ

2), and make statements about µ1 − µ2. One choice for
the null hypothesis was H0 : µ1 = µ2; given the assumptions
of the test, that null hypothesis states that the two samples are
drawn from the same normal distribution N(µ, σ2), without any
assumption about the value of µ or σ. But what if we want to
simply test whether the two samples were drawn from the same
distribution, without making any assumptions at all about that
distribution? That is the aim of the Wilcoxon rank sum test,
also known as the Mann-Whitney U -test.1

1Mann and Whitney’s original paper, Annals of Mathematical Statistics
18, 50 (1947), https://dx.doi.org/10.1214/aoms/1177730491, is quite
clearly written.
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Consider the following data

{xi} = 8.56, 5.03, 48.1, 1.31, 4.82 (1.1a)

{yj} = 15.0, 12.3, 28.0, 13.9 (1.1b)

We might like to test whether they come from the same distri-
bution. To construct a test, we should have some idea what the
alternative hypothesis is, beyond just “not the same distribu-
tion”. In the case of the pooled t test, we had three-choices of
alternative hypothesis: 1. µ1 > µ2 (one-sided), 2. µ1 < µ2 (one-
sided) or 3. µ1 6= µ2 (two-sided). Similarly, the Mann-Whitney
test considers as its alternative hypotheses:

1. the first distribution generally gives larger values than the
second (one-sided)

2. the first distribution generally gives smaller values than the
second (one-sided)

3. the first distribution either generally gives larger values
than the second, or generally gives smaller values (two-
sided)

In this case, let’s consider alternative hypothesis (2), that the
second set of values is “stochastically larger” than the first.

Now, we can’t just pair them off and see if y1 > x1, y2 > x2,
etc, because the sample sizes are not the same, and there’s no
meaning the order of the samples anyway. But we can sort the
full set of m + n = 9 data values and see whether we tend to
find the ys later in the list than the xs:

rank 1 2 3 4 5 6 7 8 9
Data 1.31 4.82 5.03 8.56 12.3 13.9 15.0 28.0 48.1
Set x x x x y y y y x

We’ll define our test statistic as the sum of all the ranks of the
xs:

W = 1 + 2 + 3 + 4 + 9 = 19 (1.2)

Note that if the samples really were from the same distribution,
each of the x ranks would be equally likely to appear anywhere
from 1 to 9, so each must have an expectation value of 5, and
as a random variable

E(W ) = 5 + 5 + 5 + 5 + 5 = 25 if H0 true (1.3)

In general the ranks go from 1 to m + n, so the “middle” rank
is (m+ n+ 1)/2, and

E(W ) =
m(m+ n+ 1)

2
if H0 true (1.4)

As an aside, the Mann-Whitney U statistic, which leads to
equivalent testing procedures, is defined as

U = W − m(m+ 1)

2
(1.5)

It’s the the total over the xs, of how many ys each of them is
greater than. I.e., the sum W of the ranks will always include
a contribution m(m+1)

2
, because the lowest x will have a rank of

at least 1, the second lowest at least 2, etc. The U statistic
subtracts off this minimum so, so the lowest possible U score is
zero.

Returning to our example, since W = 19 is less than
m(m+n+1)

2
= 25, this statistic is on the low side. That means

that the xs seem to appear earlier in the list than the ys do, so
we are in the direction indicated by the alternative hypothesis,
which says the {Yj} distribution are “stochastically larger” than
the {Xi}.

But how unlikely is so low a rank score given the null hypothe-
sis? If the samples really are drawn from the same distribution,
then any set of 5 out of the 9 possible ranks is equally likely.
There are (

9

5

)
=

9!

5!4!
=

9× 8× 7× 6

4× 3× 2× 1
= 126 (1.6)
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possibilities. If we tabulate the possible sets of ranks corre-
sponding to each statistic value, we find

W Ranks Prob
15 12345 1/126
16 12346 1/126
17 12347, 12356 2/126
18 12348, 12357, 12456 3/126
19 12349, 12358, 12367, 12457, 13456 5/126

So there’s a 12/126 ≈ 9.5% chance of getting a W statistic this
low by chance if the null hypothesis is true and the samples are
actually drawn from the same distribution, and a one-tailed test
would reject H0 at the 10% level but not the 5% level.

As you can imagine, this can get quite tedious, so as usual
there are tabulated values of thresholds for the test. It’s not
hard to see that the distribution for W is symmetric, so for
example, there is the same chance it will have its maximum
possible value of 35 = 5 + 6 + 7 + 8 + 9 as its minimum value of
15, the same chance that W = 34 as W = 16, etc. Thus

P (W ≤ 19) = P (W ≥ 31) (1.7)

In this case, though, there’s another complication, that the table
in the book only lists percentiles where m ≤ n and in our case
(m = 5, n = 4) that’s not true. However, we could switch the
roles of the x and y variables and construct a statistic W ′ which
is the sum of the ranks of all the ys. Since the ranks go from 1
to m+ n, the sum of all the ranks must be

W +W ′ =
(m+ n)(m+ n+ 1)

2
(1.8)

In our case this is 45, and thus

P (W ≤ 19) = P (W ′ ≥ 45− 19) = P (W ′ ≥ 26) (1.9)

Now, if we look up the m = 4, n = 5 section of Table A.14, we’ll
find that P (W ′≥ 27) ≈ .056 but in fact W ′≥ 26 is too common
to be listed in the table. (We can check that P (W ≤ 18) =
7/126 ≈ 0.056 as advertized in the table.)

1.2 Normal Approximation

The tables only go up to m = n = 8. Beyond that, one can treat
the rank-sum statistic as approximately normal and convert it
into an approximately standard normal statistic

Z =
W − E(W )√

V (W )
(1.10)

As noted above, E(W ) = m(m+n+1)
2

in general. With a little
more work (see Devore for details), we find

V (W ) =
mn(m+ n+ 1)

12
(1.11)

Note that since the Mann-Whitney U differs from W by a con-
stant,

E(U) = E(W )− m(m+ 1)

2
and V (U) = V (W ) (1.12)

One more modification is necessary if it happens that any of
the x and/or y values are exactly equal. First, in the calculation
of the rank-sum, all the “tied” values are assigned the average
value of the ranks spanned by the tie. For example, if the second,
third, fourth and fifth-smallest values in the combined list are
all the same, we assign them all the rank 3.5. This reduces the
variance of the statistic, so that

V (W ) =
mn

12

(
(m+ n+ 1)−

∑
i

τ 3i − τi
(m+ n)(m+ n− 1)

)
(1.13)

where τi is the number of values included in the ith tie.
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Practice Problems

15.11, 15.13

Thursday 19 April 2016

1.3 Rank-Sum Test for Nonzero Difference

The null hypothesis of the {Xi} and {Yj} being drawn from
identical distributions can be generalized to a hypothesis that
the two distributions differ only by an offset ∆0 = µ1 − µ2 =
E(Xi)−E(Yj). We can repeat the test with each xi replaced by
∆0. For instance, recalling the data from last time

rank 1 2 3 4 5 6 7 8 9
Data 1.31 4.82 5.03 8.56 12.3 13.9 15.0 28.0 48.1
Set x x x x y y y y x

suppose we have ∆0 = −5. Then after adding 5 to each x value
and sorting the results, we get

rank 1 2 3 4 5 6 7 8 9
Data 6.31 9.82 10.03 12.3 13.56 13.9 15.0 28.0 53.1
Set x+ 5 x+ 5 x+ 5 y x+ 5 y y y x+ 5

Now the sum of x-ranks has become

1 + 2 + 3 + 5 + 9 = 20 (1.14)

This is actually less extreme than we had before, and so we
would pass the one-sided test at the 10% level. On the other
hand, if ∆0 = 21, we’d have

1 2 3 4 5 6 7 8 9

−19.69 −16.18 −15.97 −12.44 12.3 13.9 15.0 27.1 28.0

x− 21 x− 21 x− 21 x− 21 y y y x− 21 y

and the rank-sum statistic would become

1 + 2 + 3 + 4 + 8 = 18 (1.15)

If we recall that P (W ≤ 18) = 0.056 from last time, we see
that the hypothesis µ1 − µ2 = 21 is rejected in a one-sided test
at e.g., confidence level 6%, which the original null hypothesis
µ1 − µ2 = 0 survived.

2 Nonparametric Confidence Intervals

2.1 Rank-Sum Intervals

We can use this property, of different hypotheses for µ1 − µ2

passing or failing the rank-sum test at a given confidence level, to
create a distribution-free confidence interval for that quantity.2

We should work with the two-sided test to get a confidence band
rather than an upper or lower bound, so for example the fact
that, for m = 5 and n = 4, P (W ≤ 18) = P (W ≥ 32) ≈ 0.056
means that a 91.2% confidence-level test will reject H0 : µ1 −
µ2 = ∆0 if the resulting W is less than 18 or greater than 32. It
will be consistent with the hypothesis if W is between 18 and 32.
We can try sliding the x values back and forth with respect to
the y values until that happens, but it’s more efficient to phrase
things a different way.

If we recall the Mann-Whitney U statistic

U = W − m(m+ 1)

2
(2.1)

this is the number of times an x−∆0 value appears later in the
list than a y value. It can also be described as the number of

2The definition can be stated more generally, to allow for distributions
without well-defined means, ad the value ∆0 such that fX(x) = fY (x−∆0).
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(i, j) pairs for which xi −∆0 > yj, i.e., x1 − yj > ∆0. There are
mn possible pairs, so the minimum value is 0 and the maximum
ismn. In the example in question, W reaches 18 and U = W−15
reaches 3 when ∆0 goes below the fourth smallest xi− yj value.
On the other hand, W reaches 32 and U reaches 17 = 20 − 3
when ∆0 goes above the 17th smallest xi − yj value. So what
we really need to do is construct the list (grid) of xi− yj values:

12.3 13.9 15.0 28.0
1.31 −10.99 −12.59 −13.69 −26.69
4.82 −7.48 −9.08 −10.18 −23.18
5.03 −7.27 −8.87 −9.97 −22.97
8.56 −3.74 −5.34 −6.44 −19.44
48.1 35.8 34.2 33.1 20.1

The smallest (most negative) numbers are in the top right:
−26.69, −23.18, −22.97, and −19.44, while the largest (most
positive) are in the bottom left: 35.8, 34.2, 33.1, and 20.1. So if
∆0 < −19.44, U is 3, which is at the edge of the 88.8% range.
If ∆0 > 20.1, U is 18, which again is at the edge of the most
likely 88.8%. so the 88.8% confidence interval on µ1 − µ2 is
from −19.44 to 20.1. Again, the critical values for these thresh-
olds can be found in the back of Devore (although only for m
and n at least 5). Note that these are actually critical values
on the Mann-Whitney U as it turns out. They are close to
mn, and the indices in the ordered list of differences we’re look-
ing for are mn − c + 1 and c. (In this example c = 17 and
mn− c+ 1 = 20− 17 + 1 = 4.)

Again, if m and n are large, we can use the normal approxi-
mation, and find

c ≈ mn

2
+ zα/2

√
mn(m+ n+ 1)

12
(2.2)

while

mn− c+ 1 ≈ mn

2
− zα/2

√
mn(m+ n+ 1)

12
+ 1 (2.3)

Practice Problems

15.21, 15.35
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