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This presentation is somewhat theoretical. For a complemen-
tary approach with more examples, see https://ccrg.rit.

edu/~whelan/courses/2018_1sp_MATH_252/notes14.pdf

0 Types of Data (See Section 2.1 of

Conover)

We haven’t placed too much emphasis on the formalities of types
of data and measurement scales, but it’s worth taking a moment
to define them, since we will be concerned in this chapter pri-
marily with categorical data. Roughly speaking, it’s convenient
to classify possible types of data as follows, from most specific
(and probably most familiar) to least specific.

• Numerical or Cardinal Data are what you might nor-
mally think of in a mathematical sense: numbers. Each
data value x is a number, and in particular if x and x′ are
two data values, it’s meaningful to talk about things like the
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size of the difference between them, x − x′. Conover fur-
ther subdivides this category into and interval scale where
x − x′ is meaningful and a ratio scale where both x − x′

and x/x′ are meaningful. (An example of a measurement
on an interval but not a ratio scale is a timestamp. 11:00
is 45 minutes later than 10:15, but it’s not meaningful to
take the ratio of two times of day.) You can also imagine
making a distinction between continuous and discrete data.

• Ordinal Data are data for which you can ask whether
x > x′, but the value of x − x′ is not meaningful. Most
of the rank-based methods we’ve discussed can operate on
ordinal data (measured on what Conover calls a ordinal
scale), while most parametric methods (t-tests, ANOVA,
etc) require at least an interval if not a ratio scale.

• Categorical Data are data which are really not even in-
herently numerical, like eye color, hair color, political party
registration, etc. We can say whether x = x′ or x 6= x′, but
there is no meaningful ordering of different data values. We
may find it convenient to label the categories with numbers,
but the ordering of the numbers is basically arbitrary. Note
that the entries in a Sudoku puzzle, while usually written
as integers 1 to 9, are only categorical as far as the rules of
the puzzle goes.

1 The Chi-squared Goodness-of-fit

Test

Suppose we have a categorical data sample {xI |I, . . . , N} of size
N where there are c categories {Ci|i = 1, . . . , c}. The null hy-
pothesis H0 specifies probabilities {p∗i |i = 1, . . . , c} for an obser-
vation to fall into each of the categories, i.e., P (X=Ci|H0) = p∗i .
For consistency, the probabilities must satisfy

∑c
i=1 p

∗
i = 1. We

don’t generally work with the original categorical data, since
all of the meaningful inference can be done with the number of
observations Oi in each category,

Oi =
N∑
I=1

I[xI = Ci] (1.1)

where
c∑
i=1

Oi = N (1.2)

If we think of these {Oi} as a random vector, the correspond-
ing probability distribution is the multinomial distribution, a
generalization of the binomial distribution

p({Oi}|N, {pi}) =
N !

O1!O2! · · ·Oc!
pO1
1 pO2

2 · · · pOc
c

Oi = 0, 1, 2, . . . ; O1 + · · ·+Oc = N (1.3)

Each one of these c random variables is a binomial Bin(N, pi)
with

E(Oi) = Npi and V (Oi) = Npi(1− pi) (1.4)

but of course they are not independent, since there is a con-
straint

c∑
i=1

Oi = N (1.5)

This means that if we know the values of O1, O2, . . . , Oc−1,
then Oc is determined. The null hypothesis specifies expected
number counts of Ei = Np∗i for each category, which satisfy∑c

i=1Ei = N . Note that in general the {Ei} will not be integers,
although the {Oi} are by definition.

As usual, we have the expected and observed values of a set
of random variables. If the sample size (here the number of
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observations N or more precisely the expected number counts
{Ei} is large enough that we can approximate things with the
normal distribution, we should be able to write a chi-squared
statistic, as we did in the Kruskal-Wallis or Friedman test. As
a reminder, this is in analogy with the following two cases:

1. For independent normal random variables Xi ∼ N(µi, σ
2
i ),

n∑
i=1

(
Xi − µi
σi

)2

∼ χ2(n) (1.6)

2. For a random sample {Xi} from N(µ, σ2), if we define Yi =
Xi −X, so that there’s a constraint

∑n
i=1 Yi = 0,

n∑
i=1

(
Xi −X
σi

)2

=
n∑
i=1

(
Yi − 0

σi

)2

∼ χ2(n− 1) (1.7)

As usual, to do this rigorously, we’d need to take into account the
covariances Cov(Oi, Oj) and invert a variance-covariance matrix,
but we can motivate the form by looking at the special case c =
2. In this case the multinomial distribution is really a binomial
distribution, where p1 = p and p2 = 1 − p, and the random
variable O2 = N − O1 is redundant with O1 ∼ Bin(N, p1). In
this case, if we apply the normal approximation to the single
non-trivial random variable, we get a chi-squared statistic

W =
(O1 −Np∗1)2

Np∗1(1− p∗1)
=

(O1 −Np∗1)2

Np∗1p
∗
2

(1.8)

We’d like to rewrite this in a way that treats 1 and 2 more
symmetrically, and can be written entirely in terms of O1, O2,
E1 and E2. The denominator can be rewritten using

1

p∗1
+

1

p∗2
=
p∗2 + p∗1
p∗1p
∗
2

=
1

p∗1p
∗
2

(1.9)

so that

W =
(O1 −Np∗1)2

Np∗1
+

(O1 −Np∗1)2

Np∗2
=

(O1 − E1)
2

E1

+
(O1 − E1)

2

E2

(1.10)
Now, this still doesn’t treat the two categories symmetrically,
but if we remember that O1 +O2 = N = E1 + E2, we see that

O1 − E1 = −(O2 − E2) (1.11)

which means we can write

W =
(O1 − E1)

2

E1

+
(O2 − E2)

2

E2

(1.12)

which is approximately chi-squared distributed with 2 − 1 = 1
degree of freedom when H0 is true.

This form turns out to extend to larger numbers of categories,
and the normal approximation gives us

W =
c∑
i=1

(Oi − Ei)2

Ei
∼ χ2(c− 1) if H0 true (1.13)

expanding the square gives a “shortcut formula”

W =
c∑
i=1

Oi
2 − 2EiOi + E2

i

Ei
=

c∑
i=1

(
Oi

2

Ei
− 2Oi + Ei

)
=
Oi

2

Ei
− 2N +N =

Oi
2

Ei
−N

(1.14)

Note that although this is nominally simpler, involving fewer
operations, it could actually be less convenient if Ei and Oi

are both large, since it involves squaring larger numbers. (In
principle, this could also run the risk of roundoff error.)
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1.1 Testing with Unknown Parameters

Sometimes the null hypothesis doesn’t uniquely specify the {p∗i },
but includes some unknown parameters θ ≡ {θ1, . . . , θm}. For
instance, the null hypothesis might state that the number of
male puppies in a litter of five is a binomial random variable
Bin(5, θ), but not specify the value of the parameter θ. The
procedure in this case is to estimate the parameters using the
observed data (either the categorical number counts or possibly
some finer-grained data from which it was resolved). The best
guess expected counts {Êi = Np∗i (θ̂)} are then used to construct
the goodness-of-fit statistic

Ŵ =
c∑
i=1

(Oi − Êi)2

Êi
(1.15)

where now the expected counts {Êi} also depend on the data.
If we have fit m parameters in this way, we would ideally expect
the null distribution of Ŵ to be χ2(c− 1−m). (This is exact if
everything is linear, but it can actually be slightly underestimate
the p-value in general, since the method used for estimating the
parameters may not actually minimize the chi-squared statistic.)

1.2 Testing a Probability Distribution

One obvious type of categorical data to which the chi-squared
test can be applied is a histogram. Take, for example, Problem
6.1.4 from Conover, which provided the results of “candling”
eggs, listing the number of rejected eggs by crate as 4, 0, 2, 0, 2,
0, 2, and 0. The hypothesis that the number of rejected eggs is
given by a Poisson distribution with mean 1.5, and it was tested
in that problem using the Kolmogorov test and found a p-value
of greater than 20%. We can also test the hypothesis using the
chi-squared test, first collecting the observations by number of
eggs rejected:

In [1]: from __future__ import division

In [2]: import numpy as np

In [3]: from scipy import stats

In [4]: x_iota = np.array([4, 0, 2, 0, 2, 0, 2, 0])

In [5]: N = len(x_iota); N

Out[5]: 8

In [6]: c = 6

In [7]: ilist = np.arange(c); ilist

Out[7]: array([0, 1, 2, 3, 4, 5])

In [8]: O_i = np.sum(x_iota[None,:]==ilist[:,None],

axis=-1); O_i

Out[8]: array([4, 0, 3, 0, 1, 0])

In [9]: O_i[-1] = np.sum(x_iota>=(c-1)); O_i

Out[9]: array([4, 0, 3, 0, 1, 0])

Note that, although the distribution was discrete, we did have
to make a decision in defining the categories, defining the last
bin to be xi ≥ 5. This didn’t matter for the observed num-
ber counts, which cut off at some point, but has an impact on
the expected numbers, which we estimate using the pmf of the
Poisson distribution:

In [10]: pstar_i = stats.poisson(1.5).pmf(ilist);

pstar_i

Out[10]:

array([ 0.22313016, 0.33469524, 0.25102143,

0.12551072, 0.04706652,
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0.01411996])

In [11]: pstar_i[-1] = stats.poisson(1.5).sf(c-1.5);

pstar_i

Out[11]:

array([ 0.22313016, 0.33469524, 0.25102143,

0.12551072, 0.04706652,

0.01857594])

In [12]: np.sum(pstar_i)

Out[12]: 1.0

In [13]: E_i = N*pstar_i; E_i

Out[13]:

array([ 1.78504128, 2.67756192, 2.00817144,

1.00408572, 0.37653215,

0.14860749])

Now we can calculate the test statistic and compare it to a chi-
squared with 6− 1 = 5 degrees of freedom.

In [14]: W = np.sum((O_i-E_i)**2/E_i); W

Out[14]: 8.1008829563997153

In [15]: np.sum(O_i**2/E_i)-N

Out[15]: 8.1008829563997153

In [16]: stats.chi2(df=c-1).sf(W)

Out[16]: 0.1507627106021614

We find a p-value of about 15%, still consistent with the hypoth-
esized distribution.

If, on the other hand, we’d been told to expect a Poisson
distribution but not told the mean, we could have estimated it
from the observed data:

In [17]: np.mean(x_iota)

Out[17]: 1.25

In [18]: phatstar_i = stats.poisson(1.25).pmf(ilist)

; phatstar_i

Out[18]:

array([ 0.2865048 , 0.358131 , 0.22383187,

0.09326328, 0.02914478,

0.00728619])

In [19]: phatstar_i[-1] = stats.poisson(1.25).sf(c

-1.5); phatstar_i

Out[19]:

array([ 0.2865048 , 0.358131 , 0.22383187,

0.09326328, 0.02914478,

0.00912428])

In [20]: np.sum(phatstar_i)

Out[20]: 1.0

In [21]: Ehat_i = N*phatstar_i; Ehat_i

Out[21]:

array([ 2.29203837, 2.86504797, 1.79065498,

0.74610624, 0.2331582 ,

0.07299423])

In [22]: What = np.sum((O_i-Ehat_i)**2/Ehat_i); What

Out[22]: 8.2957131997978433

Now, since we’ve used the data to estimate the mean of the
distribution, we should compare the value to a chi-squared with
6− 1− 1 = 4 degrees of freedom:

In [23]: stats.chi2(df=c-1-1).sf(What)

Out[23]: 0.08132708524626904
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The p-value is actually lower, 8.1%, but still indicates data plau-
sibly consistent. Actually, something is a little odd here, because
the chi-squared value of 8.3 is slightly higher than the 8.1 we
had with the hypothesized Poisson mean of 1.5. This is an illus-
tration of the pitfall in estimating parameters. We can see what
value actually produces the lowest chi-squared:

In [24]: theta = np.linspace(1.25,1.5,100)

In [25]: ptheta_i = stats.poisson(theta[:,None]).pmf

(ilist[None,:])

In [26]: ptheta_i[:,-1] = stats.poisson(theta).sf(c

-1.5)

In [27]: min(np.sum(ptheta_i,axis=-1))

Out[27]: 0.99999999999999989

In [28]: max(np.sum(ptheta_i,axis=-1))

Out[28]: 1.0000000000000002

In [29]: Etheta_i = N*ptheta_i

In [30]: Wtheta = np.sum((O_i[None,:]-Etheta_i)**2/

Etheta_i,axis=-1)

In [31]: figure();

In [32]: plot(theta,Wtheta);

In [33]: xlabel(r'$\theta$');

In [34]: ylabel(r'$\chi^2$ statistic');

In [35]: grid(True);

In [36]: xlim(1.25,1.5);

In [37]: savefig('notes04_minchisq.eps',bbox_inches
='tight');
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We see that the chi-squared takes on its minimum value of 8.1
when the Poisson mean is about 1.39:

In [38]: theta[np.argmin(Wtheta)]

Out[38]: 1.3914141414141414

In [39]: Wmin = min(Wtheta); Wmin

Out[39]: 7.9315533424663851
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In [40]: stats.chi2(df=c-1-1).sf(Wmin)

Out[40]: 0.094117906644314936

The p-value is 9.4%, which is still somewhat lower than we had
with the hypothesized Poisson mean. Although the chi-squared
is lower, it has to be compared to a distribution with one fewer
degree of freedom. (The data are still consistent with the null
hypothesis in any event.)

Thursday 15 November 2018
– Read Section 4.2 of Conover

2 Two-Way Contingency Tables

An important generalization of the categorical data problem is
when there are multiple sets of categories, and each observa-
tion is classified into one category from each set. For instance,
we may be randomly drawing individuals from a population
and categorizing them based on eye color and hair color. We
can think of each observation as a multi-dimensional categori-
cal vector. For concreteness, we focus on the case where there
are two sets of categories: {R1, . . . ,Rr} =≡ {Ri|i = 1, . . . , r}
and {C1, . . . , Cc} =≡ {Cj|j = 1, . . . , c}. The N observations are
then a paired categorical data sample {(xI , yI)|I = 1, . . . , N},
where xI ∈ {Ri} and yI ∈ {Cj}. We can count up the number
of observations in each pair of categories

Oij =
N∑
I=1

I[xI = Ri, yI = Cj] (2.1)

and arrange them into what’s known as a contingency table:

j = 1 j = 2 · · · j = c
i = 1 O11 O12 · · · O1c r1
i = 2 O21 O22 · · · O2c r2

...
...

...
. . .

...
...

i = r Or1 Or2 · · · Orc rr
c1 c2 · · · cc N

We can define the row and column totals (total number of ob-
servations in each set of categories)

r∑
i=1

Oij = cj

c∑
j=1

Oij = ri (2.2)

The total number of observations is given by

r∑
i=1

ri = N =
c∑
j=1

cj (2.3)

Rather than checking a hypothesized set of probabilities for each
category, the usual test checks for an association between the
categories in the two sets. The null hypothesis says that the
column and row in which an observation is categorized have no
influence on each other, e.g., that a person with blue eyes is no
more likely to have brown as opposed to blond hair than a person
with brown eyes. Defining a null distribution for a statistic
requires us to define what we’d mean by repeated experiments.
There are several different possible assumptions:

1. Only the total number of observations N is fixed. Row
totals {Ri} and column totals {Cj} are random variables.
In general, {Oij|i = 1, . . . , r; j = 1, . . . , c} are a multinomial
random vector with probabilities {pij}. The null hypothesis
says pij = pi•p•j for some {pi•|i = 1, . . . , r} with

∑r
i=1 pi• =

1 and some {p•j|i = 1, . . . , c} with
∑c

j=1 p•j = 1.
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2. The total number ri in each row is fixed. For each
i, we have a multinomial random vector {Oij|i =
1, . . . , r; j = 1, . . . , c}, which in general has probabili-

ties {p(i)1 , p
(i)
2 , . . . , p

(i)
c } ≡ {p(i)j }. The null hypothesis says

p
(i)
j = p•j for all i.

3. The row numbers {ri} and column numbers {cj} are as-
sumed to be fixed. The distribution of {Oij} is then purely
down to combinatorics: how do we arrange the N obser-
vations into rows and columns in a way that respects the
marginal totals.

In each case we’ll have a null expectation value Eij for the num-
ber of observations in row i and column j, and we’ll define a
chi-squared statistic

r∑
i=1

c∑
j=1

(Oij − Eij)2

Eij
=

r∑
i=1

c∑
j=1

O2
ij

Eij
−N (2.4)

It will turn out that for each of the assumptions about the null
distribution, Eij = ricj/N , and, under the null hypothesis and
the normal approximation, the statistic will be chi-squared dis-
tributed with (r−1)(c−1) degrees of freedom. For small samples,
however, the details of the null distribution will depend on the
assumptions made about the experimental setup.

Tuesday 20 November 2018
– Read Section 4.1 of Conover

2.1 2× 2 Contingency Tables

You saw on the last homework that there were slightly different
null distributions for the chi-squared statistic from a two-way
contingency table, depending on whether we assumed the row
totals were fixed or only the total number of observations. We

want to explore this in a little more detail, so we look at the
simple case where r = 2 = c. In that case, the contingency
table looks like this:

j = 1 j = 2
i = 1 O11 O12 r1
i = 2 O21 O22 r2

c1 c2 N

The exact probability distributions depend on the details of the
experimental setup, in particular which quantities (the row and
column totals, just the row totals, or just the total number of
observations) are assumed to be held fixed in hypothetical rep-
etitions of the experiment.

2.1.1 Fisher’s Exact Test

The most restrictive set of assumptions is that the {ri} and {cj}
are known in advance, and only the {Oij} are random. This
means that everything is actually determined by one random
variable, say O11, and then we can find O12 = r1 − O11, O21 =
c1 −O11, and

O22 = r2 −O21 = N − r1 − c1 +O11 (2.5)

The null probability distribution for O11 is a hypergeometric
distribution, since we are choosing r1 objects out of N , where c1
of the N are of a certain type, and finding that O11 out of the
r1 are of the type we chose.

As a quick refresher on the hypergeometric distribution, and
sampling without replacement, suppose that we have a hand
with seven cards, three of them hearts and four spades:

♥ 2 3 4
♠ 2 3 4 5
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Suppose we draw four cards, at random, without replacement.
What is the probability that we will end up with one heart and
three spades? There are(

7

4

)
=

7!

4!3!
=

7× 6× 5

3× 2× 1
= 35 (2.6)

possible sets of four cards we can draw out of the seven available.
How many of those include one heart and three spades? There
are (

3

1

)
=

3!

1!2!
= 3 (2.7)

possibilities for the heart and(
4

3

)
=

4!

3!1!
= 4 (2.8)

possibilities for which three spades we have, so there are 3×4 =
12 different four-card sets with one heart and three spades. So
the probability of getting exactly one heart in a four card set
when there are three hearts available out of seven cards to choose
from is (

3
1

)(
4
3

)(
7
4

) =
12

35
≈ 0.3429 (2.9)

Returning to the contingency table, the probability of getting
O11 of the r1 observations in row 1 to be in column 1, when we
know that c1 of the total N observations will be in column 1 is(

c1
O11

)(
c2
O12

)(
N
r1

) =
c1!c2!r1!r2!

N !O11!O21!O12!O22!
(2.10)

If we know that the row and column totals are fixed in an ex-
perimental design, “Fisher’s exact test” says to compare the one
degree of freedom in the table, say O11, against the appropriate
hypergeometric distribution. Suppose for example we have the
following contingency table

1 6 7
8 2 10
9 8 17

In [1]: from __future__ import division

In [2]: import numpy as np

In [3]: from scipy import stats

In [4]: O_ij = np.array([[1,6],[8,2]])

In [5]: r_i = np.sum(O_ij,axis=-1); r_i

Out[5]: array([ 7, 10])

In [6]: c_j = np.sum(O_ij,axis=0); c_j

Out[6]: array([9, 8])

In [7]: N = np.sum(r_i); N

Out[7]: 17

In [8]: O11 = O_ij[0,0]; O11

Out[8]: 1

In [9]: r1 = r_i[0]; r1

Out[9]: 7

In [10]: c1 = c_j[0]; c1

Out[10]: 9

In [11]: x = np.arange(max(0,r1+c1-N),min(r1,c1)+1);

x

Out[11]: array([0, 1, 2, 3, 4, 5, 6, 7])
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In [12]: px = stats.hypergeom(N,c1,r1).pmf(x); px

Out[12]:

array([ 0.00041135, 0.01295763, 0.10366104,

0.30234471, 0.36281366,

0.18140683, 0.03455368, 0.00185109])

In [13]: pxobs = stats.hypergeom(N,c1,r1).pmf(O11);

pxobs

Out[13]: 0.012957630604689428

In [14]: pval_fisher = np.sum(px[px<=pxobs]);

pval_fisher

Out[14]: 0.015220074043603449

For large N , we can apply a normal approximation to the hy-
pergeometric distribution using the mean and variance

E(O11) =
r1c1
N

(2.11a)

Var(O11) =
N − r1
N − 1

r1
c1
N

N − c1
N

=
r1r2c1c2

N2(N − 1)
(2.11b)

and so the test statistic

T =

√
N − 1

r1r2c1c2
(NO11 − r1c1) (2.12)

should be approximately standard normal. This looks pretty
asymmetric, but if we write

NO11 − r1c1 = (O11 +O12 +O21 +O22)O11 − (O11 +O12)(O11 +O21)

= O11O22 −O12O21

(2.13)

we get the more symmetrical form

T =

√
N − 1

r1r2c1c2
(O11O22 −O12O21) (2.14)

2.1.2 Test for Equal Proportions

The assumption that the row and column totals are both fixed
makes for a somewhat artificial experimental setup. Fisher de-
veloped his test in the context of the so-called “lady tasting tea”
experiment. A lady claimed to be able to tell by taste whether
milk had been added to a cup of tea, or tea had been poured
into a cup already containing milk. Fisher tested her ability by
preparing eight cups of tea, four by each method, and asking
her to determine which four had the tea poured first and which
four had the milk first. This setup did indeed guarantee that
the row totals (number of cups prepared tea-first and number
milk-first) as well as the column totals (number of cups identi-
fied as tea-first and number identified as milk-first) were fixed
(all to 4 in this case). But if he had not told her how many
were prepared each way, but asked her to identify each cup as
tea-first or milk-first as it came, the row totals would have been
fixed, but not the column totals.

If the row totals are known but not the column totals, there
are only two constraints, and thus two (independent) random

variables O11 ∼ Bin(r1, p
(1)
1 ) and O21 ∼ Bin(r2, p

(2)
1 ). The null

hypothesis says that p
(1)
1 = p

(2)
1 = p•1, but doesn’t specify the

value of p•1. The joint null pmf for O11 and O21 is

p(O11, O21) =

(
r1
O11

)
pO11
•1 (1− p•1)r1−O11

(
r2
O21

)
pO21
•1 (1− p•1)r2−O21

=
r1!r2!

O11!O12!O21!O22!
pc1•1p

c2
•2

(2.15)

In [15]: r2 = r_i[1]; r2

Out[15]: 10

In [16]: c2 = c_j[1]; c2
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Out[16]: 8

In [17]: O11vals = np.arange(r1+1); O11vals

Out[17]: array([0, 1, 2, 3, 4, 5, 6, 7])

In [18]: O21vals = np.arange(r2+1); O21vals

Out[18]: array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,

10])

In [19]: c1vals = O11vals[:,None] + O21vals[None,:]

In [20]: c2vals = N - c1vals

In [21]: statvals = (N*O11vals[:,None]-r1*c1vals)/np

.sqrt(c1vals*c2vals+1e-6)

In [22]: mystat = (N*O11-r1*c1)/np.sqrt(c1*c2);

mystat

Out[22]: -5.4211519890968649

In [23]: np.sum(statvals<=mystat)

Out[23]: 8

In [24]: np.sum(statvals>=-mystat)

Out[24]: 8

In [25]: p1 = np.linspace(0,1,100)

In [26]: pmfvals = stats.binom(r1,p1[None,None,:]).

pmf(O11vals[:,None,None]) * stats.binom(r2,p1[

None,None,:]).pmf(O21vals[None,:,None])

In [27]: plower = np.sum((statvals<=mystat)[:,:,None

]*pmfvals,axis=(0,1))

In [28]: pupper = np.sum((statvals>=-mystat)[:,:,

None]*pmfvals,axis=(0,1))

In [29]: plot(p1,plower,'b--',label='lower-tailed');

In [30]: plot(p1,pupper,'g-.',label='upper-tailed');

In [31]: plot(p1,plower+pupper,'k-',label='two-
tailed');

In [32]: legend(loc='lower center');

In [33]: xlabel(r'$p_{\bullet 1}$');

In [34]: ylabel(r'$\alpha$');

In [35]: title(r'Significance for $2\times 2$ table

');

In [36]: savefig('notes04_alpha2x2.eps',bbox_inches
='tight');

In [37]: pval_row = max(plower+pupper); pval_row

Out[37]: 0.0050535355899577281
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We see that, if the column totals are not actually fixed, Fisher’s
exact test has overestimated the p-value.

For large sample sizes, we can also apply a normal approxi-
mation, assuming that the two random variables O11 and O21

are independent and approximately normal with the means and
variances given by the binomial distribution:

E(O11) = r1p
(1)
1 and E(O21) = r2p

(2)
1 (2.16a)

Var(O11) = r1p
(1)
1 (1− p(1)1 ) and Var(O21) = r2p

(2)
1 (1− p(2)1 )

(2.16b)

To test the null hypothesis that p
(1)
1 = p

(2)
1 = p•1, we should use

the test statistic O11/r1 −O21/r2. Assuming H0, this has mean

E

(
O11

r1
− O21

r2

)
= 0 (2.17)

and variance

Var

(
O11

r1
− O21

r2

)
=

(
1

r1
+

1

r2

)
p•1(1− p•1) (2.18)

We can replace the unknown p•1 with its estimate

p̂•1 =
O11 +O21

r1 + r2
=
C1

N
(2.19)

and likewise

1− p̂•1 = 1− O11 +O21

r1 + r2
=
C2

N
(2.20)

We then assume that the standardized statistic1

T1 =
O11/r1 −O21/r2√(

1
r1

+ 1
r2

)
C1

N
C2

N

(2.21)

is approximately standard normal. We can simplify the statistic
as

T1 =
r2O11 − r1O21√
r1r2(r2 + r1)

C1

N
C2

N

=
(O21 +O22)O11 − (O11 +O12)O21√

r1r2(r2 + r1)
C1

N
C2

N

=

√
N

r1r2C1C2

(O11O22 −O12O21)

(2.22)

Note that this is
√

N
N−1 times the large-sample normal approx-

imation to the test statistic in Fisher’s exact test, (2.14). As
you’ll show on the homework, the square of T1 appearing in
(2.22) is the standard chi-squared statistic for a two-way contin-
gency table. (This makes sense, since the square of a standard
normal random variable is a χ2(1) random variable.)

1This is just the usual test for a difference in population proportions, as
in e.g., section 9.4 of Devore, Probability and Statistics for Engineering and
the Sciences.
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Tuesday 27 November 2018
– Read Section 4.3 of Conover

2.2 Mood’s Median Test

We now describe a test which is an application of the chi-
squared test for a 2 × c contingency table. Suppose that you
have c samples drawn from different populations and wish to
test whether they have the same median. To keep in line with
the notation of this chapter, we write the sizes of the c sam-
ples as {cj|j = 1, . . . , c}, and the total number of data values as∑c

j=1 cj = N and we can write the data as {xιj|ι = 1, . . . , cj; j =
1, . . . c} where we use the Greek letter iota (ι) to avoid con-
fusion with the column label i. Now, we know that we can
use the Kruskal-Wallis test to check whether the samples all
come from the same distribution, but suppose we want to allow
for different distributions with the same (unspecified) median.
An obvious estimate of that median is the median of all the
{xιj} ≡ {XI |I = 1 . . . , N}, known as the “grand median”. We
then categorize each point in each sample by whether it’s above
or below the grand median. Since it’s possible to have some
values exactly equal to the grand median (if N is odd and/or
some data values are equal), we define the categories as > and
≤. We can then arrange the number counts in these categories
into a 2 × c contingency table. (We’ll follow Conover’s some-
what counterintuitive convention of listing the number of values
greater than the grand median in the first row.)

j = 1 j = 2 · · · j = c
> O11 O12 · · · O1c r1
≤ O21 O22 · · · O2c r2

c1 c2 · · · cc N

If the samples are all drawn from distributions with the same me-
dian, the probability of a value landing above or below the me-

dian will be the same (nominally one-half, although this might
be slightly different for discrete distributions with a non-zero
probability of landing right at the median). So we can con-
struct the standard chi-squared statistic for independence (this
time of columns) in the contingency table:

T =
c∑
j=1

2∑
i=1

N

ricj

(
Oij −

ricj
N

)2
(2.23)

We can simplify this somewhat, along the same lines that we
used when considering the chi-squared goodness-of-fit test with
two categories) by noting that

O2j −
r2cj
N

= cj −O1j −
(N − r1)cj

N
= −

(
O1j −

r1cj
N

)
(2.24)

and so

T = N
c∑
j=1

(O1j − r1cj/N)2

cj

(
1

r1
+

1

r2

)
(2.25)

but
1

r1
+

1

r2
=
r2 + r1
r1r2

=
N

r1r2
(2.26)

so

T =
N2

r1r2

c∑
j=1

(O1j − r1cj/N)2

cj
(2.27)

If none of the original sample values are equal to the grand
median, so that r1 = r2 = N/2 by definition, we have the further
simplification

T = 4
c∑
j=1

(O1j − cj/2)2

cj
=

c∑
j=1

(O1j −O2j)
2

cj
if r1 = r2 (2.28)

Note that if the sample size is not large enough to use the
chi-squared approximation, the setup of the test means that the
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column totals (the sizes of the c samples) are fixed, and the row
totals are approximately fixed since we know r1 ≈ N

2
≈ r2. The

null distribution that’s appropriate is thus the one associated
with fixed marginal totals.

Thursday 29 November 2018
– Read Section 4.6 of Conover

2.3 Cochran’s Q Test

We now turn to a scenario which is somewhere between a con-
tingency table and a complete block design. We consider a con-
tingency table in which all of the counts are either 0 or 1, and
are assumed to correspond to the yes/no response of r different
subjects to c different treatments. We call these responses {Xij}
and the data table looks like

Treatment
1 2 · · · c

i = 1 X11 X12 · · · X1c r1
i = 2 X21 X22 · · · X2c r2

...
...

...
. . .

...
...

i = r Xr1 Xr2 · · · Xrc rr
c1 c2 · · · cc N

If we imagine repeating the experiment, each observation is a
Bernoulli random variable. i.e., a binomial with one trial, Xij ∼
Bin(1, p(ij)). We write the probability as p(ij) rather than pij
to stress that there is no constraint placed on any sum of the
probabilities, just a requirement that 0 ≤ p(ij) ≤ 1 for all i
and j. We can also see that the marginal totals are all random
statistics in this picture, since they represent the total numbers
of successes that happen to occur:

Treatment
1 2 · · · c

i = 1 X11 X12 · · · X1c R1

i = 2 X21 X22 · · · X2c R2
...

...
...

. . .
...

...
i = r Xr1 Xr2 · · · Xrc Rr

C1 C2 · · · Cc N

The null hypothesis H0 is that each subject responds the same
way to all the treatments, i.e., p(ij) = p(i•) for each i, but we
don’t make any statements about the {p(i•)}. Under H0, the row
totals might be quite different, but the column totals (number
of successes for each treatment) should be similar. We’re thus
interested in the statistical properties of Cj =

∑r
i=1Xij. It has

mean

E(Cj) =
r∑
i=1

E(Xij) =
r∑
i=1

p(i•) (2.29)

and variance

Var(Cj) =
r∑
i=1

Var(Xij) =
r∑
i=1

p(i•)(1− p(i•)) (2.30)

To construct a statistic, we need to replace the unknown p(i•)

with the estimator Ri/c. Note that this means the estimator of
E(Cj) is

r∑
i=1

Ri

c
=
N

c
=

1

c

c∑
j=1

Cj (2.31)

which is what you’d have written down as your best guess (the
expected column total is the average of the column totals). Each
column’s contribution to the statistic should then be

[Cj − E(Cj)]
2

Var(Cj)
∼ (Cj −N/c)2∑r

i=1(Ri/c)(1−Ri/c)
(2.32)
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Because both the mean and the variance are estimated, the rel-
evant correlations turn out to give a statistic

Q = c(c− 1)

∑c
j=1(Cj −N/c)2∑r
i=1(Ri)(c−Ri)

(2.33)

whose null distribution is approximately χ2(c− 1).

2.3.1 Importance of Blocking Information

Note that, if we didn’t know that all of the observations in the
same block were related, we would pool them together and create
a 2× c contingency table where the two rows were just successes
and failures. The observations would be O1j ≡ the number of
successes in column j (which is Cj in the current notation) and
O2j ≡ the number of failures in column j (which is r−Cj in the
current notation). The contingency table would look like

Treatment
1 2 · · · c

Success C1 C2 · · · Cc N
Failure r − C1 r − C2 · · · r − Cc rc−N

r r · · · r rc

As you’ll see on the homework, this test is less sensitive if the
blocking carries important information.

2.3.2 McNemar’s Test (see Conover Section 3.5)

In the case where c = 2, Cochran’s test is equivalent to a test
performed using a 2 × 2 contingency table, known as McNe-
mar’s test. When there are only two columns, the information
in each block consists of whether the pair (Xi1, Xi2) is (0, 0),
(0, 1), (1, 0), or (1, 1), and the important information is how
many blocks of each kind we have. We’re then dealing with a
2× 2 contingency table

Xi2 = 0 Xi2 = 1
Xi1 = 0 a b
Xi1 = 1 c d

The interpretation of this table is different from the usual two-
way contingency table, though. If the treatments behave differ-
ently, b and c will differ from each other. The McNemar test
statistic is

(b− c)2

b+ c
(2.34)

which is approximately χ2(1) distributed if the treatments are
equivalent.
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