
Some Methods Based on Ranks
(Conover Chapter Five)

STAT 345-01: Nonparametric Statistics ∗

Fall Semester 2018

Contents

1 The Wilcoxon Signed Rank Test 2

1.1 Ties . 5

1.2 Confidence Interval for the Median Difference . . 6

2 The Wilcoxon-Mann-Whitney Rank Sum Test 9

2.1 Normal Approximation 13

2.2 Rank-Sum Intervals 14

3 The Kruskal-Wallis Test 15

4 Comparisons of Power and Efficiency 18

4.1 Power Curves . 19

4.2 ROC Curves . 19

4.3 Asymptotic Relative Efficiency 23

5 The Conover Squared-Ranks Test for Equal Vari-
ances 25

5.1 Extension to k-Sample Case 28

∗Copyright 2018, John T. Whelan, and all that

6 Measures of Correlation 28
6.1 Pearson’s r . 28
6.2 Spearman’s ρ . 29
6.3 Kendall’s τ . 32

7 The Friedman and Quade Tests 37
7.1 The Complete Block Design 37
7.2 The Friedman Test 38
7.3 The Quade Test 39

1

Thursday 20 September 2018
– Read Section 5.7 of Conover; refer to Section
3.1 of Hollander and Section 4.2 of Higgins

1 The Wilcoxon Signed Rank Test

Recall that last week we considered the sign test for paired data,
where the random sample is {(Xi, Yi)}. The test statistic was
constructed from the signs of the differences1 Di = Yi − Xi.
We noted that this meant discarding a lot of information about
the data, in order to avoid being thrown off by outliers. But
we can still keep a little more information about the size of the
differences. Consider the following dataset:

from __future__ import division

import numpy as np

from scipy import stats

xi = np.array([18.0, 18.7, 14.7, 17.1, 11.2, 14.2])

yi = np.array([13.1, 14.2, 15.1, 14.9, 13.5, 11.7])

figure();

plot(xi,yi,'ko');

plot([11,19],[11,19]);

savefig('notes05_sr_scatter.eps',bbox_inches='tight');

1We’re adopting Conover’s somewhat unusual convention of calling yi >
xi a positive difference. Of course, in a given problem you can generally
define which quantity is x and which is y, so you should always sanity check
the signs rather than applying formulas blindly.

11 12 13 14 15 16 17 18 19
11

12

13

14

15

16

17

18

19

The sign test simply observes that two of the points are above
the line (di > 0) and four are below the line (di < 0) so the
two-sided p-value is

P (N+≤2)+P (N+≥4) = P (N+ 6=3) = 1−
(

6

3

)
1

26
= 1−20

64
= 0.6875

(1.1)
But looking at the plot, this configuration looks unusual in a
way that’s not captured by counting the number of positive and
negative differences. The four points below the line are generally
farther away from it than the two points above the line. The
signed rank test tries to address this by ranking the absolute
differences |yi − xi| from smallest to largest and then, instead of
just counting the positive differences, adding up their ranks:

In [10]: di = yi - xi; di

2

Out[10]: array([-4.9, -4.5, 0.4, -2.2, 2.3, -2.5])

In [11]: idx = np.argsort(np.abs(di))

In [12]: di[idx]

Out[12]: array([0.4, -2.2, 2.3, -2.5, -4.5, -4.9])

The positive differences are 0.4 (which is the smallest) and 2.3
(which is the third smallest, so in this case the test statistic is
t+ = 1 + 3 = 4.

In [13]: n = len(xi)

In [14]: ranks = np.arange(n) + 1; ranks

Out[14]: array([1, 2, 3, 4, 5, 6])

In [15]: posranks = ranks[di[idx] >= 0]; posranks

Out[15]: array([1, 3])

In [16]: t = posranks.sum(); t

Out[16]: 4

To get a p-value, we need to think about the probability dis-
tribution of this statistic under the null hypothesis that each
difference is as likely to be positive as negative. If each rank is
equally likely to have a + associated with it as a −, there are
2n different outcomes, which are all equally likely. Here, n = 6,
so 2n = 26 = 64. Now, we have to ask how many of them give a
signed rank statistic of 4 or less. There are few enough of them
that we can just list them:

− − − − − − 0
+ − − − − − 1
− + − − − − 2
− − + − − − 3
+ + − − − − 1+2=3
− − − + − − 4
+ − + − − − 1+3=4

So there are 7 out of 64 outcomes with T ≤ 4, and another 7
equally extreme outcomes on the other end of the distribution
(more on this in a moment), so the p-value is 14

64
= 0.21875. It’s

still not in “statistically significant” territory (since this is such
a small sample), but it does a better job than the sign test of
flagging this dataset as slightly unusual. The null distribution
of this statistic is tabulated in Conover’s Appendix Table A12.
We can cobble something together in Python to enumerate all
64 outcomes, calculate the signed rank statistic, and histogram
the results:

flags = np.array([[np.right_shift(d,i) % 2

for i in xrange(n)] for d in xrange(2**n)])

ranks*flags

(ranks*flags).shape

wilco = (ranks*flags).sum(axis=-1)

wmin = min(wilco)

wmax = max(wilco)

figure();

counts,bins = np.histogram(wilco,bins=np.arange(wmin

,wmax+2))

wvals = bins[:-1]

bar(wvals,counts,align='center');
xlim(wmin-0.5,wmax+0.5);

xlabel('t');
ylabel('Number of outcomes');

3

title('Histogram for signed rank stat w/$n=%d$' % n)

;

savefig('notes05_wilco_hist.eps',bbox_inches='tight
');

0 5 10 15 20
t

0

1

2

3

4

5

Nu
m

be
r o

f o
ut

co
m

es

Histogram for signed rank stat w/n=6

We can divide by 2n = 64 to get the pmf, and we can use this
(either the histogram or the original array) to get the p value as
above:

In [33]: np.sum(wilco <= t)

Out[33]: 7

In [34]: 2*np.mean(wilco <= t)

Out[34]: 0.21875

Unfortunately, this solution doesn’t scale very well. For n = 30,
there are a billion outcomes, and the associated “giga-” will
use up my laptop’s memory and grind everything to a halt.
Fortunately, SciPy has a function that does the Wilcoxon signed
rank test on the original data:

In [35]: stats.wilcoxon(xi,yi)

/usr/lib/python2.7/dist-packages/scipy/stats/

morestats.py:1961:

UserWarning: Warning: sample size too small for

normal approximation.

warnings.warn("Warning: sample size too small for

normal approximation.")

Out[35]: (4.0, 0.17295491798842066)

Unfortunately, it doesn’t actually calculate the exact p-value,
as indicated by the warning and the fact that it gets the wrong
answer. It does at least calculate the correct signed rank statistic
for us, though. This is one place where R really does win.2 It
implements the null distribution for the signed rank statistic as
dsignrank(), the cumulative distribution as psignrank, and
the quantiles as qsignrank:

> n <- 6

> t <- seq(0,n*(n+1)/2)

> plot(t,dsignrank(t,n))

> 2*psignrank(4,n)

[1] 0.21875

> qsignrank(0.025,n)

[1] 1

> psignrank(1,n)

[1] 0.03125

2Note that you can actually call R functions from within python using
the rpy2 package, which can be pretty handy in cases like this where one
function is missing.

4

It also has a wilcox.test() function which gets the exact p-
value for small sample sizes:

> x <- c(18.0, 18.7, 14.7, 17.1, 11.2, 14.2)

> y <- c(13.1, 14.2, 15.1, 14.9, 13.5, 11.7)

> wilcox.test(x,y,paired=TRUE)

Wilcoxon signed rank test

data: x and y

V = 17, p-value = 0.2188

alternative hypothesis: true location shift is not

equal to 0

The p-value is indeed 0.21875, rounded to four decimal places.
Note that R reports the statistic value as 17; that’s because R
is adding the ranks of the differences where xi is larger than yi,
so it gets what Conover would call t−. The two statistics are
related in general by

T+ + T− =
n∑
r=1

r =
n(n+ 1)

2
(1.2)

In this case, n(n+1)
2

= 6(7)
2

= 21. This is also the maximum
possible value of the statistic T+.

When n becomes large, the distribution of T+ becomes ap-
proximately normal, which simplifies the calculation of p-values
for large n. It turns out to be easier to write this in terms of

W = T+ − T− = 2T+ − n(n+ 1)

2
(1.3)

This is just the sum of all the ranks with a + or − sign attached,
so for the data above it would be

w = +1− 2 + 3− 4− 5− 6 = +4− 17 = −13 (1.4)

It’s easy to see that E(W = 0), and possible to work out3

Var(W) = E(W 2) =
n∑
r=1

r2 =
n(n+ 1)(2n+ 1)

6
(1.5)

So that you can then use the statistic

Z =
W√

n(n+1)(2n+1)
6

(1.6)

1.1 Ties

In the sign test, we dealt with the possibility that Xi = Yi for
some observations by ignoring those observations and just ap-
plying the sign test to the smaller subsample with those zero
differences excluded. We do that in the signed rank test as well,
but we also have another kind of tie to contend with: what if two
of the differences are non-zero in magnitude: |di| = |dj| for some
i 6= j? (This is possible if X and Y are discrete, or rounded off
to low enough precision to be effectively discrete.) What ranks
are assigned to them? The procedure is straightforward: if the
two or more absolute differences are equal, assign the average
of the relevant ranks to each of them. E.g., if the third and
fourth average differences are the same, they each get a rank of
3.5. Assigning a p-value to the statistic is somewhat trickier,
though, since the whole argument about possible outcomes as-
sumed there were no ties among the ranks. In fact, you can’t
really calculate the probability distribution for T+ in the preses-
ence of ties without knowing how likely it is to have ties in the
rankings. But you can still use the normal approximation. The
one difference is that the variance of W is no longer a constant,

3Hint: let the rth signed rank Rr be ±r so that W =
∑n

r=1Rr. Argue
that E(Rr) = 0, E(RrRs) = 0 if r 6= s, and E(Rr

2) = r2.

5

and instead you have to put in the sum of the squares of the
ranks, to get a test statistic

Z =
W√∑n
r=1Rr

2
=

∑n
r=1Rr√∑n
r=1Rr

2
(1.7)

For example, with n = 6 differences and no ties, the sum of the
squared ranks will be

n∑
r=1

(rr)
2 = 12 + 22 + 32 + 42 + 52 + 62 = 91

=
n(n+ 1)(2n+ 1)

6
=

6(7)(13)

6

(1.8)

On the other hand, if there’s a tie for third and fourth, you’ll
get

n∑
r=1

(rr)
2 = 12 + 22 + 3.52 + 3.52 + 52 + 62 = 90.5 (1.9)

Tuesday 25 September 2018
– Read Section 5.7 of Conover; refer to Section
3.3 of Hollander and Section 4.2 of Higgins

1.2 Confidence Interval for the Median Dif-
ference

The signed rank statistic can also be used to define a confidence
interval on the typical offset between the random variables in
a paired distribution. Consider the paired data {(xi, yi)} from
last time, along with the differences di = yi − xi.

In [1]: from __future__ import division

In [2]: import numpy as np

In [3]: from scipy import stats

In [4]: xi = np.array([18.0, 18.7, 14.7, 17.1, 11.2, 14.2])

In [5]: yi = np.array([13.1, 14.2, 15.1, 14.9, 13.5, 11.7])

In [6]: di = yi - xi; di

Out[6]: array([-4.9, -4.5, 0.4, -2.2, 2.3, -2.5])

In [7]: n = len(di)

Last time we considered the null hypothesis that the differences
were drawn from a symmetric distribution with zero median,
which we evaluated using the signed rank statistic. Consider
instead the hypothesis that the differences {Di} come from a
symmetric distribution with median θ, i.e., that {Di − θ} is
drawn from a symmetric distribution with median 0. So we
apply the signed rank test to di − θ = yi − xi − θ, and ask for
which values of θ we do not reject H0 at a certain significance.
In particular, if we want a 90% two-sided confidence interval, we
should ask for which θ values we get a p-value of more than 0.05.
We can get the 5th percentile of the sign rank distribution with
n = 6 using R, which I’ll import into python to avoid switching
environments:

In [8]: from rpy2.robjects.packages import importr

In [9]: rstats = importr('stats',on_conflict="warn")
/usr/lib/python2.7/dist-packages/rpy2/robjects/

packages.py:216: UserWarning: Conflict when

converting R symbol in the package "stats" to a

Python symbol (format.perc -> format_perc while

there is already format_perc)

6

warn(msg)

In [10]: print(rstats.qsignrank(0.05,6))

[1] 3

We can check the cdf of 3, which is P (T+ ≤ 3), and the cdf of
2, which is P (T+ < 3)

In [11]: print(rstats.psignrank(3,6))

[1] 0.078125

In [12]: print(rstats.psignrank(2,6))

[1] 0.046875

In [13]: print(2.*(rstats.psignrank(2,6)[0]))

0.09375

So we get a p-value of 0.094 if T+ ≤ 2 or T+ ≥ 17. Of course we
could also tell this from our hand-counting of outcomes which
told us there were 3 ways out of 64 to make a signed-rank statis-
tic of 0, 1 or 2:

In [14]: 6/64

Out[14]: 0.09375

In [15]: 1-6/64

Out[15]: 0.90625

Recall that the sign-rank statistic for the original {di} (which
corresponds to θ = 0 gave us positive ranks of 1 and 3, so
t+ = 1 + 3 = 4:

In [16]: theta = 0.

In [17]: di[np.argsort(np.abs(di-theta))]-theta

Out[17]: array([0.4, -2.2, 2.3, -2.5, -4.5, -4.9])

Since 2 < 4 < 19, that means θ = 0 is in within the confidence
interval. We consider what happens to the adjusted differences
di − θ as we vary θ:

In [18]: theta = 0.025

In [19]: di[np.argsort(np.abs(di-theta))]-theta

Out[19]: array([0.375, -2.225, 2.275, -2.525,

-4.525, -4.925])

As we increase θ, the positive differences move towards zero
and the negative differences move away from zero. The signed
rank statistic will change when they cross each other and change
places in the sorted list:

In [21]: figure();

In [22]: for i in xrange(n):

....: plot(di[i]-thetavec,thetavec,'g-',lw=1.5);

....: plot(thetavec-di[i],thetavec,'r--',lw=1.5);

....:

In [23]: xlim(0,8);

In [24]: ylim(0,0.2);

The first time that happens is when θ = 0.05

In [25]: theta = 0.05

In [26]: di[np.argsort(np.abs(di-theta))]-theta

Out[26]: array([0.35, -2.25, 2.25, -2.55, -4.55, -4.95])

because

− 2.2− 0.05 = −2.25 = −(2.3− 0.05) (1.10)

7

this crossing lowers the signed-rank statistic from 1 + 3 = 4 to
1 + 2 = 3. The θ at which it occurs, is when

di − θ = −(dj − θ) (1.11)

where i and j are the indices of the differences di = −2.2 and
dj = 2.3. This can be solved for

θ =
di + dj

2
(1.12)

i.e., the signed rank statistic changes by 1 when θ crosses the
average of two of the differences.

If we keep going, we see that the next time the rank-sum
statistic changes is when θ = 0.4:

In [27]: ylim(0,1);

In [28]: theta = 0.4

In [29]: di[np.argsort(np.abs(di-theta))]-theta

Out[29]:

array([3.33066907e-16, 1.90000000e+00, -2.60000000e+00,

-2.90000000e+00, -4.90000000e+00, -5.30000000e+00])

At this point, di − θ changes sign, where i is the index of the
difference di = 0.4, and the signed-rank statistic drops from
1 + 2 = 3 to 2. This means that for θ > 0.4 the signed-rank
statistic will be ≤ 2 and the two-sided p-value will be below
10%, so this is the upper end of the 90% confidence interval.

So we see that the value of the signed-rank statistic changes
by 1 every time θ crosses the average of two differences

di+dj
2

, or

an individual difference di (which is the average di+di
2

):

In [30]: ylim(-5,3);

In [31]: grid(True);

In [32]: xlabel(r'$|d_i-\theta|$');

In [33]: ylabel(r'θ');

In [34]: savefig('notes05_sr_ci.eps',bbox_inches='tight');

0 1 2 3 4 5 6 7 8
|di−θ|

−5

−4

−3

−2

−1

0

1

2

3

θ

So if we want to get the values of θ that fall between the three
highest and three lowest signed-rank statistic values, we just
have to list those values. It’s not quite the full list of averages
di+dj

2
for all i and j, since that would list the differences with

i 6= j twice, and they only change the statistic by one, not two:

In [35]: 0.5*(di[:,None]+di[None,:])

8

Out[35]:

array([[-4.9 , -4.7 , -2.25, -3.55, -1.3 , -3.7],

[-4.7 , -4.5 , -2.05, -3.35, -1.1 , -3.5],

[-2.25, -2.05, 0.4 , -0.9 , 1.35, -1.05],

[-3.55, -3.35, -0.9 , -2.2 , 0.05, -2.35],

[-1.3 , -1.1 , 1.35, 0.05, 2.3 , -0.1],

[-3.7 , -3.5 , -1.05, -2.35, -0.1 , -2.5]])

Instead, we just need the list for i ≤ j:

In [36]: avgs = np.sort(np.array(list(flatten

([[0.5*(di[i]+di[j]) for j in xrange(i,n)] for i

in xrange(n)]))))

In [37]: avgs

Out[37]:

array([-4.9 , -4.7 , -4.5 , -3.7 , -3.55, -3.5 ,

-3.35, -2.5 , -2.35,

-2.25, -2.2 , -2.05, -1.3 , -1.1 , -1.05, -0.9

, -0.1 , 0.05,

0.4 , 1.35, 2.3])

Note that in the list of averages
di+dj

2
for i = 1, . . . , n, j =

i, . . . , n, there will be n(n+1)
2

individual entries, which is consis-
tent with the fact that the signed-rank statistic can be any value
from 0 to n(n+1)

2
.

So in particular, to get the 90% confidence interval when n =
6, i.e., the range of θ values which give a signed-rank statistic
greater than 2 and less than 19, we need to take the 2nd and
19th numbers in the sorted list of differences. In our case, that
is from −4.5 to 0.4.

In [38]: (avgs[2-1],avgs[19-1])

Out[38]: (-4.7000000000000002, 0.40000000000000036)

Note that the point estimate, i.e., a 0% confidence interval,
would be the middle entry, number n(n+1)

4
out of n(n+1)

2
if n

is even. This is not the sample median of the {di}, but rather
the median of the averages. This is known as the Hodges-
Lehmann estimator, and it’s actually estimating something
called the pseudomedian, which is the median of the averages
of pairs of draws from the population or distribution. For a sym-
metric distribution, the median and pseudomedian (and mean,
if it exists) are all the same.

Thursday 27 September 2018
– Read Section 5.1 of Conover; refer to Sec-
tion 4.1 of Hollander and Sections 2.4-2.6 of
Higgins

2 The Wilcoxon-Mann-Whitney

Rank Sum Test

Suppose that, instead of having paired data, we have two inde-
pendent samples {Xi|i = 1, . . . , n} and {Yj|j = 1, . . . ,m}4 from
possibly different distributions. Since the data are not paired,
the two samples need not be the same size, either. For con-
venience, we’ll call the total size of the two samples together
n+m = N . We can test the null hypothesis that the two sam-
ples are drawn from the same distribution, or more precisely
that P (X > Y) = P (X < Y) by combining the two samples
into one list, ranking that list, and then using as a test statistic
the sum of the ranks of the {xi}. As an example, consider the
following samples, with n = 5, m = 4, and N = 5 + 4 = 9:

4Note that we’re following Conover’s somewhat unusual convention of
calling the size of the first sample n and the size of the second sample m,
never mind alphabetical order.

9

In [1]: from __future__ import division

In [2]: import numpy as np

In [3]: from scipy import stats

In [4]: xi = np.array([8.56, 5.03, 48.1, 1.31, 4.82])

In [5]: yi = np.array([15.0, 12.3, 28.0, 13.9])

In [6]: n = len(xi); n

Out[6]: 5

In [7]: m = len(yi); m

Out[7]: 4

In [8]: N = n+m; N

Out[8]: 9

It’s convenient to summarize the data in a table:

rank 1 2 3 4 5 6 7 8 9
Data 1.31 4.82 5.03 8.56 12.3 13.9 15.0 28.0 48.1
Set x x x x y y y y x

In [9]: combo = np.concatenate((xi,yi))

In [10]: idx = np.argsort(combo)

In [11]: combo[idx]

Out[11]:

array([1.31, 4.82, 5.03, 8.56, 12.3 , 13.9 ,

15. , 28. ,

48.1])

In [12]: xflags = np.concatenate(([True,]*n,[False

,]*m))

In [13]: xflags[idx]

Out[13]: array([True, True, True, True, False,

False, False, False, True], dtype=bool)

In [14]: ranks = np.arange(N)+1

In [15]: xranks = ranks[xflags[idx]]; xranks

Out[15]: array([1, 2, 3, 4, 9])

In [16]: Wx = np.sum(xranks); Wx

Out[16]: 19

The Wilcoxon rank-sum statistic is wx = 1 + 2 + 3 + 4 + 9 = 19,
because the four lowest values in the combined sample (1.31,
4.82, 5.03, and 8.56), and the highest (48.1) come from the {xi}.
With a little bit of thought, we can see that the smallest possible
value for wx is

min(Wx) = 1 + · · ·+ n =
n(n+ 1)

2
(2.1)

which in this case is 15, while the largest is

max(Wx) = (m+ 1) + · · ·+N = nm+
n(n+ 1)

2
(2.2)

which in this case is 35. If H0 is true, so that the x ranks are
equally likely to fall anywhere in the list, the expected average
rank should be the middle value N+1

2
, so the null expectation

value of the rank-sum statistic is

E(Wx) =
n(N + 1)

2
=
n(n+m+ 1)

2
if H0 true (2.3)

10

Some related statistics which carry the same information are:

• The sum of the ranks of the {yj} is wy = 5+6+7+8 = 26.

• The Mann-Whitney U statistic5 is the total over the {xi},
of how many of the {yj} each one of them is greater than.
So for this data set this is ux = 0 + 0 + 0 + 0 + 4 = 4.

• The Mann-Whitney U statistic for the {yj} is uy = 4 + 4 +
4 + 4 = 20.

In [17]: yflags = np.bitwise_not(xflags)

In [18]: yranks = ranks[yflags[idx]]; yranks

Out[18]: array([5, 6, 7, 8])

In [19]: Wy = np.sum(yranks); Wy

Out[19]: 26

In [20]: Ux = np.sum(xi[None,:] > yi[:,None]); Ux

Out[20]: 4

In [21]: Uy = np.sum(yi[None,:] > xi[:,None]); Uy

Out[21]: 16

Some relationships among these statistics fall out:

• The sum of wx and wy is the sum of all the ranks, which is

wx + wy = 1 + · · ·+N =
N(N + 1)

2
(2.4)

5Mann and Whitney publlished their statistic in Annals of Mathe-
matical Statistics 18, 50 (1947), https://dx.doi.org/10.1214/aoms/

1177730491. It actually cites Wilcoxon’s paper Biometrics Bulletin 1,
80 (1945) https://doi.org/10.2307/3001968 which proposed both the
signed rank and rank sum tests, but didn’t work out the null distribution.

• The Wilcoxon and Mann-Whitney statistics are related by

wx = ux +
n(n+ 1)

2
(2.5)

Note that this is consistent with the fact that the Mann-
Whitney u statistic has a minimum value of 0 and a maxi-
mum value of nm.

• The Mann-Whitney U statistics for x and y are related by

ux + uy = nm (2.6)

In [22]: Wx + Wy

Out[22]: 45

In [23]: N*(N+1)//2

Out[23]: 45

In [24]: Wx - Ux

Out[24]: 15

In [25]: n*(n+1)//2

Out[25]: 15

In [26]: Wy - Uy

Out[26]: 10

In [27]: m*(m+1)//2

Out[27]: 10

In [28]: Ux + Uy

Out[28]: 20

In [29]: m*n

Out[29]: 20

11

https://dx.doi.org/10.1214/aoms/1177730491
https://dx.doi.org/10.1214/aoms/1177730491
https://dx.doi.org/10.1214/aoms/1177730491
https://dx.doi.org/10.1214/aoms/1177730491
https://doi.org/10.2307/3001968
https://doi.org/10.2307/3001968

If the sample size is large, we can use the Central Limit The-
orem to convert the rank-sum statistic into a z score (perhaps
with the appropriate continuity correction) and compare it to
the standard normal percentiles. If the size is small, the p-value
comes down to a bit of counting.

Returning to our example, since W = 19 is less than n(N+1)
2

=
25, this statistic is on the low side. That means that the xs
seem to appear earlier in the list than the ys do, so we are in
the direction indicated by the alternative hypothesis, which says
the {Yj} distribution are “stochastically larger” than the {Xi},
i.e.,

H1 : P (Yj >Xi) > P (Yj <Xi) (2.7)

But how unlikely is so low a rank score given the null hypothe-
sis? If the samples really are drawn from the same distribution,
then any set of 5 out of the 9 possible ranks is equally likely.
There are (

9

5

)
=

9!

5!4!
=

9× 8× 7× 6

4× 3× 2× 1
= 126 (2.8)

possibilities. If we tabulate the possible sets of ranks corre-
sponding to each statistic value, we find

Ux Wx Ranks Prob
0 15 12345 1/126
1 16 12346 1/126
2 17 12347, 12356 2/126
3 18 12348, 12357, 12456 3/126
4 19 12349, 12358, 12367, 12457, 13456 5/126

So there’s a 12/126 ≈ 9.5% chance of getting a W statistic this
low by chance if the null hypothesis is true and the samples are
actually drawn from the same distribution, and a one-tailed test
would reject H0 at the 10% level but not the 5% level.

We can code up the counting of permutations in python, but
as with the signed rank statistic, R already has a set of distri-
bution functions for the Mann-Whitney U statistic:

In [30]: U = np.arange(n*m+1)

In [31]: from rpy2.robjects.packages import importr

In [32]: rstats = importr('stats',on_conflict="warn
")

/usr/lib/python2.7/dist-packages/rpy2/robjects/

packages.py:216: UserWarning: Conflict when

converting R symbol in the package "stats" to a

Python symbol (format.perc -> format_perc while

there is already format_perc)

warn(msg)

In [33]: rstats.dwilcox(19-15,5,4)

Out[33]:

<FloatVector - Python:0x7fbd97381248 / R:0x4e8b928>

[0.039683]

In [34]: 126 * rstats.dwilcox(19-15,5,4)[0]

Out[34]: 5.0

In [35]: rstats.pwilcox(19-15,5,4)

Out[35]:

<FloatVector - Python:0x7fbd97557d88 / R:0x51e76d8>

[0.095238]

In [36]: import rpy2.robjects.numpy2ri as rpyn

In [37]: Upmf = np.array(rstats.dwilcox(rpyn.

numpy2ri(U),n,m))

12

In [38]: figure();

In [39]: bar(U,Upmf,align='center');

In [40]: xlabel(r'U');

In [41]: ylabel(r'$p(U)$');

In [42]: title(r'pmf of Mann-Whitney U with $n=%d$
, $m=%d$' % (n,m));

In [43]: xlim(-1,n*m+1);

In [44]: savefig('notes05_mw_pmf.eps',bbox_inches='
tight');

0 5 10 15 20
U

0.00

0.02

0.04

0.06

0.08

0.10

p
(U

)

pmf of Mann-Whitney U with n=5, m=4

Despite the names dwilcox, pwilcox etc, the R functions relate
to the distribution of the Mann-Whitney statistic Ux, not the
Wilcoxon rank-sum statistic Wx = Ux + n(n+1)

2
.

2.1 Normal Approximation

If the sample sizes are large, we can treat the statistic Wx (or

Ux) as approximately normal. As noted above, E(Wx) = n(N+1)
2

,
and similarly

E(Ux) =
nm

2
(2.9)

The variance is a little trickier to work out, but if we consider
that

Wx =
n∑
i=1

Ri (2.10)

where Ri is the rank (in the combined list) of Xi, then {Ri} is
a sample of size n drawn without replacement from the integers
1, . . . , N , then it turns out that Conover worked out back in sec-
tion 1.4 that Var(Ri) = (N+1)(N−1)

12
and Cov(Ri, Ri′) = − (N+1)

12

(where i 6= i′), so

Var(Wx) = nVar(Ri) + n(n− 1) Cov(Ri, Ri′)

= n[(N − 1)− (n− 1)]
N + 1

12
=
nm(N + 1)

12

(2.11)

Each of the related statistics (Ux, Wy and Wx) will have the
same variance.

We can apply the normal approximation to the example at
hand:

In [45]: mu = n*(N+1)//2; mu

Out[45]: 25

In [46]: sigma = np.sqrt(n*m*(N+1)/12.); sigma**2

13

Out[46]: 16.666666666666668

In [47]: print(sigma)

4.08248290464

In [48]: z = (Wx - mu)/sigma; z

Out[48]: -1.4696938456699067

In [49]: stats.norm.cdf(z)

Out[49]: 0.070822345147568397

Note that since the p-value is P (W ≤19|H0) = P (W ≤19.5|H0),
we could include a continuity correction:

In [50]: stats.norm.cdf((Wx + 0.5 - mu)/sigma)

Out[50]: 0.088954797493491222

We can compare this approximate p-value of 8.9% to the exact
value of 9.5% calculated above.

As in the case of the signed-rank statistic, we have to modify
the procedure if it happens that any of the x and/or y values
are exactly equal. First, in the calculation of the rank-sum, all
the “tied” values are assigned the average value of the ranks
spanned by the tie. For example, if the second, third, fourth
and fifth-smallest values in the combined list are all the same,
we assign them all the rank 3.5. This reduces the variance of
the statistic, so that

Var(Wx) =
nm

12

(
(N + 1)−

∑
i

τ 3i − τi
N(N − 1)

)
(2.12)

where τi is the number of values included in the ith tie.

2.2 Rank-Sum Intervals

As with the signed-rank statistic, we can use the rank-sum test
to produce a confidence interval for the offset between the distri-

butions or populations from which the {Xi} and {Yj} are drawn.
We can consider a rank-sum test of the null hypothesis

H0 : P (X − θ > Y) = P (X − θ < Y) (2.13)

and ask for what values of θ this would not be rejected at signif-
icance α; that will provide a 1 − α confidence interval. This is
easiest to describe in terms of the Mann-Whitney U , the number
of i,j pairs for which

xi − θ > yj (2.14)

Following the same argument we used in the signed-rank case,
the statistic will change every time θ = xi − yj for some i and
j, so the procedure says to rank the nm differences xi − yj and
set an interval using these differences.

Using our example data, supposing we want a 90% confidence
interval on the location difference between the x and y popu-
lations. We start by finding the 5th percentile of the Mann-
Whitney U distribution:

In [51]: rstats.qwilcox(0.05,5,4)

Out[51]:

<FloatVector - Python:0x7f9d32ba6cb0 / R:0x53ee648>

[3.000000]

In [52]: rstats.pwilcox(3,5,4)

Out[52]:

<FloatVector - Python:0x7f9d31ee69e0 / R:0x53ee468>

[0.055556]

In [53]: rstats.pwilcox(2,5,4)

Out[53]:

<FloatVector - Python:0x7f9d31ee67e8 / R:0x607a078>

[0.031746]

14

So we see that

P (2< Ux < 18) = 1− 8

126
approx93.7% (2.15)

We collect and sort the differences xi − yj, of which there are
nm = 20, which also makes sense, since the Mann-Whitney
statistic can be between 0 and 20:

In [54]: diffs = np.sort(xi)[:,None]-np.sort(yi)[

None,:]; diffs

Out[54]:

array([[-10.99, -12.59, -13.69, -26.69],

[-7.48, -9.08, -10.18, -23.18],

[-7.27, -8.87, -9.97, -22.97],

[-3.74, -5.34, -6.44, -19.44],

[35.8 , 34.2 , 33.1 , 20.1]])

12.3 13.9 15.0 28.0
1.31 −10.99 −12.59 −13.69 −26.69
4.82 −7.48 −9.08 −10.18 −23.18
5.03 −7.27 −8.87 −9.97 −22.97
8.56 −3.74 −5.34 −6.44 −19.44
48.1 35.8 34.2 33.1 20.1

In [55]: sorteddiffs = np.sort(list(flatten(diffs)))

; sorteddiffs

Out[55]:

array([-26.69, -23.18, -22.97, -19.44, -13.69,

-12.59, -10.99, -10.18,

-9.97, -9.08, -8.87, -7.48, -7.27, -6.44,

-5.34, -3.74,

20.1 , 33.1 , 34.2 , 35.8])

If θ < −26.69, ux−θ = 0; if −26.69 < θ < −23.18, ux−θ = 1;
if −23.18 < θ < −22.97 <, ux−θ = 2. Similarly, if 35.8 < θ,

ux−θ = 20, if 34.2 < θ < 35.8, ux−θ = 19; if 33.1 < θ < −34.2,
ux−θ = 18. So the range of θ values for which 2< ux−θ < 18 is:

In [56]: (sorteddiffs[2],sorteddiffs[-2-1])

Out[56]: (-22.969999999999999, 33.100000000000001)

Tuesday 2 October 2018
– Read Section 5.2 of Conover; refer to Section
6.1 of Hollander and Section 3.2 of Higgins

3 The Kruskal-Wallis Test

As a generalization of the two-sample Wilcoxon rank-sum test,
suppose we have k samples, and let the ith sample {xij} have
size ni. The total number of data points in all of the samples
is N =

∑k
i=1 ni. We combine and sort all N values, and let

the rank of xij be Rij. If we write the sum of the ranks in the
ith sample as Ri =

∑ni

j=1Rij = niRi, we have k statistics {Ri};
however they can be described by only k − 1 quantities, since
they obey the constraint

∑k
i=1Ri = N(N+1)

2
. (In the case where

k = 2, we already saw that the sum of the ranks in the second
group, R2, which we called Wy, was determined by the sum of
the ranks in the first group, R1, which we called Wx, so there
was only k − 1 = 1 independent statistic.) To convert these
k − 1 independent numbers into a single statistic, we consider
the normal approximation that we expect will apply when all of
the {ni} are reasonably large.

If we consider the k statistics {Ri}, they have expectation
values

E(Ri) = ni
N + 1

2
(3.1)

variances

Var(Ri) = ni(N − ni)
N + 1

12
(3.2)

15

and covariances

Cov(Ri, R`) = −nin`
N + 1

12
if i 6= ` (3.3)

The variances and covariances can be summarized into a
variance-covariance matrix with elements (for i = 1, . . . k and
` = 1, . . . k)

Cov(Ri, R`) = (Nδi`ni − nin`)
N + 1

12
(3.4)

where

δi` =

{
1 if i = `

0 if i 6= `
(3.5)

is the Kronecker delta (the elements of the identity matrix). We
could turn any one of them into a standard normal by shifting
and scaling, but what about the others. Recall that if we have
n independent standard normal random variables Zi, then

W =
n∑
i=1

(Zi)
2 (3.6)

is a chi-squared random variable with n degrees of freedom, W ∼
χ2(n). So if {Xi} are independent normal random variables with
E(Xi) = µi and Var(Xi) = σ2

i , then

W =
n∑
i=1

(
Xi − µi
σ2
i

)2

(3.7)

Now, in this case the random variables are not independent, so
this construction doesn’t quite work. But there is a somewhat
analogous situation; suppose {Xi} are a random sample from a
normal distribution with variance σ2. Then if we define

Yi = Xi −X = Xi −
1

n

n∑
k=1

Xk (3.8)

we have n correlated random variables {Yi} related by one con-
straint

∑n
i=1 Yi = 0. One of the results of Student’s theorem,

which underpins the confidence intervals for mean and variance
when both are unknown is that6

n∑
i=1

(
Yi
σ

)2

=
n∑
i=1

(
Xi −X

σ

)2

∼ χ2(k − 1) (3.9)

The one constraint among the k {Yi} causes the number of de-
grees of freedom to be k − 1 rather than k.

If you go through a similar calculation with the rank-sums
{Ri}, you find7

T =
12

N(N + 1)

k∑
i=1

1

ni

(
Ri − ni

N + 1

2

)2

∼ χ2(k − 1) (3.10)

If there are ties, the variances of the various statistics are
reduced, and the statistic has to be modified. Of the various
equivalent forms, the simplest is probably

T = (N − 1)

∑k
i=1

(
Ri − ni N+1

2

)2
/ni∑k

i=1

∑ni

j=1

(
Rij − N+1

2

)2 ∼ χ2(k − 1) (3.11)

In [1]: from __future__ import division

In [2]: import numpy as np

In [3]: from scipy import stats

6For a derivation of this result, see e.g., section 6.3 of https://ccrg.
rit.edu/~whelan/courses/2015_3fa_STAT_405/notes03.pdf.

7The key step in the derivation is to write the variance-covariance matrix

(3.4) as N(N+1)
12
√
nin`

(
δij −

√
nin`

N

)
and recognize the expression in parentheses

as a projection operator with one zero eigenvalue and k−1 unit eigenvalues.

16

https://ccrg.rit.edu/~whelan/courses/2015_3fa_STAT_405/notes03.pdf
https://ccrg.rit.edu/~whelan/courses/2015_3fa_STAT_405/notes03.pdf

In [4]: xij = [np.array([14.97, 5.80, 25.03, 5.50

]),

...: np.array([5.83, 13.96, 21.96]),

...: np.array([17.89, 23.03, 61.09, 18.62,

55.51])]

In [5]: ni = np.array([len(x) for x in xij]); ni

Out[5]: array([4, 3, 5])

In [6]: k = len(ni); k

Out[6]: 3

In [7]: N = np.sum(ni); N

Out[7]: 12

In [8]: group = np.concatenate([(i,)*ni[i] for i in

xrange(k)])

In [9]: xijflat = np.concatenate(xij)

In [10]: idx = np.argsort(xijflat)

In [11]: xijflat[idx]

Out[11]:

array([5.5 , 5.8 , 5.83, 13.96, 14.97, 17.89,

18.62, 21.96,

23.03, 25.03, 55.51, 61.09])

In [12]: group[idx]

Out[12]: array([0, 0, 1, 1, 0, 2, 2, 1, 2, 0, 2, 2])

In [13]: ranks = np.arange(N)+1; ranks

Out[13]: array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

11, 12])

In [14]: Rij = [ranks[group[idx]==i] for i in xrange

(k)]; Rij

Out[14]: [array([1, 2, 5, 10]), array([3, 4, 8]),

array([6, 7, 9, 11, 12])]

In [15]: Ri = np.array([np.sum(rij) for rij in Rij])

; Ri

Out[15]: array([18, 15, 45])

In [16]: Ri/ni

Out[16]: array([4.5, 5. , 9.])

In [17]: 0.5*(N+1)

Out[17]: 6.5

In [18]: T = 12/(N*(N+1)) * np.sum((Ri-ni*0.5*(N+1))

**2/ni); T

Out[18]: 4.1538461538461542

In [19]: stats.chi2(df=k-1).sf(T)

Out[19]: 0.12531520484413722

17

Thursday 4 October 2018
– Refer to Section 2.4 of Conover

4 Comparisons of Power and Effi-

ciency

Now that we’ve considered a number of nonparametric (and
parametric) tests, it’s a good time to pause and consider some
of the metrics we use to compare them. Recall that the signifi-
cance α of a test is the probability of making a type I error (false
alarm) and rejecting H0, if H0 is true:

α = P (reject H0|H0) (4.1)

while the power or efficiency is the probability of rejecting H0 if
the alternative hypothesis H1 is true:

γ = P (reject H0|H1) (4.2)

For concreteness, suppose that a hypothesis tests constructs a
test statistic T (x) from the observed data x and rejects H0 if
T (x) is greater than or equal to some threshold value c.8 Then
we can write

α = P (T (X)≥ c|H0) (4.3a)

γ = P (T (X)≥ c|H1) (4.3b)

(4.3c)

Written in this form, we can think of the statistic T (x) as defin-
ing a family of tests with different values of c; typically, we
choose the c that gets us as close as possible to our desired
significance α and see what the resulting γ is.

For concreteness, consider two examples:

8Basically all tests can be put into this form; e.g., a two-tailed test that
rejects H0 if z ≥ c or z ≤ −c can be rewritten to use the statistic |z| and
reject H0 if |z| ≥ c.

• The t-test, designed to test the null hypothesis H0 that the
sampling distribution has zero mean, against a one-sided
alternative hypothesis H1 that the mean of the sampling
distribution is positive. The test statistic is

Tt(x) =
x√
s2/n

(4.4)

where n is the size of the sample x ≡ {xi}, x = 1
n

∑n
i=1 xi is

the sample mean, and s2 = 1
n−1

∑n
i=1(xi−x)2 is the sample

variance.

• The sign test (which is a special case of the quantile test
in which p∗ = 0.5 and x∗ = 0), designed to test the null
hypothesis H0 that the sampling distribution has zero me-
dian, against a one-sided alternative hypothesis H1 that
the median of the sampling distribution is positive. The
test statistic is the number of positive values

Tq(x) = #i(xi > 0) =
n∑
i=1

Ix>0(xi) (4.5)

where Ix>0(xi) is the indicator function which is 1 if x > 0
and 0 if x < 0.

In the situation of interest for robust inference, both H0 and
H1 are composite hypotheses. The null hypotheses (H0) above
specify the mean or median of the sampling distribution, but not
the form of the distribution itself. Is it normal, or Student-t, or
Laplace (double exponential)? (For all of these distributions, the
mean and median are the same.) Is it some distribution which
violates the assumptions of one of the tests, like the Cauchy dis-
tribution (which has a median but whose mean is undefined), or
is it some distribution for which the mean and median are not
the same, like a gamma distribution? The alternative hypothe-
ses (H1) likewise don’t specify the form of the distribution, but

18

additionally they don’t specify the location parameter which H0

sets to zero. So in addition to the unspecified form, there’s a
parameter θ, which we’ll refer to as the size of the effect, a mea-
sure of the amount by which H1 differs from H0. We’ll assume
for simplicity that θ = 0 corresponds to null hypothesis H0 and
that H1 specifies θ > 0.

We can also see that the definitions of T (x) above depend on
the size n of the data sample (which is after all a property of
x, but one that we assume we know before we’ve collected the
data). It’s also reasonable to assume that the threshold c of
interest will be set in a way that depends on n.

So, taking all this into account, the significance α of a test
depends on:

• The choice of test statistic T (x)

• The form of null sampling distribution

• The choice of threshold c

• The sample size n

The power γ depends on all of that plus the effect size θ.
Now we can consider a comparison between two families of

tests with statistics T1(x) and T2(x). The comparison is to be
done under the assumption of a null sampling distribution, so
there will be one comparison assuming a normal sampling dis-
tribution, one for Laplace, one for Cauchy, etc. We can write
the significance and power of each test as9

α1 = α1(c1, n1) and γ1 = γ1(c1, n1, θ) (4.6a)

α2 = α2(c2, n2) and γ2 = γ2(c2, n2, θ) (4.6b)

In general, if α1 = α2, n1 = n2 and γ1 > γ2, we say that T1
gives us a more powerful (or efficient) test than T2. But this

9We could also allow for different effect sizes θ1 and θ2, but all of the
comparisons we’re interested in will be done at the same effect size θ.

may depend on the form of the sampling distribution and the
significance α and sample size n at which the comparison is done.

Note that it doesn’t really make sense to compare the thresh-
olds c1 and c2, since they’re defined for different statistics.

4.1 Power Curves

One comparison we’ve done on a few homeworks is to fix a value
of n = n1 = n2, and choose c1 and c2 to acheive a specified value
of α = α1 = α2 and then plot γ1(θ) and γ2(θ) as functions of the
effect size θ. For example, on a recent homework, you found,
for n = 100 and α = 0.0443, the following power curves γt(θ)
and γq(θ) for different families of sampling distribution, shown
in figure 1.

4.2 ROC Curves

One drawback to comparing tests using power curves is that
the comparison has to be done at a specified significance α,
which means a specified threshold c1 or c2 for each test. An
alternative is to consider the families of tests, each of which
can be “tuned”: lowering the threshold increases the power γ,
but it also increases the false alarm probability α. To do this
we fix the sample size n = n1 = n2 and the effect size θ, and
consider how, for each test, α and γ change when the threshold c
is varied. As noted above, it’s not really meaningful to plot e.g.,
γ1(c1) and γ2(c2) on the same set of axes, since the thresholds
for the different tests mean different things, and there’s nothing
special about tests for which c1 = c2. Instead we want to plot
γ1(c1) versus α1(c1) and γ2(c2) versus α2(c2), i.e., we can consider
γ1(c1) and α1(c1) as the functions which define a parametrized
curve. Such a γ-versus-α plot is known as an ROC curve. The
ROC stands for “Receiver Operating Characteristic”, and the
technique was developed for evaluating radar detection during

19

0.0 0.1 0.2 0.3 0.4 0.5 0.6
θ

0.0

0.2

0.4

0.6

0.8

1.0

γ
(θ

)

Power curves for normal sampling distribution

quantile test
t-test
CLT

0.0 0.1 0.2 0.3 0.4 0.5 0.6
θ

0.0

0.2

0.4

0.6

0.8

1.0

γ
(θ

)

Power curves for Laplace sampling distribution

quantile test
t-test
CLT

Figure 1: Power curves for one-tailed tests under different sampling distributions. Note that the curve lablled “quantile test” is actually for
the sign test.

World War II. It doesn’t generally appear in statistics textbooks,
but it’s a useful complement to the other comparative measures
we’re considering today.

from __future__ import division

import numpy as np

from scipy import stats

n = 100

theta = 0.2

c_q = np.arange(0,n+2)

c_q

p0 = 0.5

p1 = stats.norm(loc=theta).sf(0)

alpha_q = stats.binom(n,p0).sf(c_q-0.5)

gamma_q = stats.binom(n,p1).sf(c_q-0.5)

figure();

plot(alpha_q,gamma_q,'b-',label='sign test');

xlabel(r'α');

ylabel(r'γ');

title(r'ROC curve for $N(%.1f,1)$, $n=%d$' % (theta,n));

xlim(0,1);

ylim(0,1);

grid(True);

plot(alpha_q,alpha_q,'k:');

N = 10**4

x_ji = stats.norm.rvs(size=(N,n))

xbar_j = np.mean(x_ji,axis=-1)

20

s_j = np.std(x_ji,ddof=1,axis=-1)

t_j0 = xbar_j / (s_j/np.sqrt(n))

t_j1 = (xbar_j+theta) / (s_j/np.sqrt(n))

cmin = -3

cmax = 3 + theta * np.sqrt(n)

c_t = np.linspace(cmin,cmax,1000)

alpha_t = np.mean(t_j0[None,:] >= c_t[:,None], axis=-1)

gamma_t = np.mean(t_j1[None,:] >= c_t[:,None], axis=-1)

plot(alpha_t,gamma_t,'g--',label=r't-test');

legend(loc='lower right')

p1 = stats.laplace(loc=theta,scale=np.sqrt(0.5)).sf(0)

alpha_q = stats.binom(n,p0).sf(c_q-0.5)

gamma_q = stats.binom(n,p1).sf(c_q-0.5)

savefig('notes05_roc_gauss.eps',bbox_inches='tight');

It’s convenient to draw the line γ = α on the graph, since any
consistent test must lie above and to the right of that line. We
also note that a more powerful test will be found above and to
the left of a less powerful one.

0.0 0.2 0.4 0.6 0.8 1.0
α

0.0

0.2

0.4

0.6

0.8

1.0

γ

ROC curve for N(0.2,1), n=100

sign test
t-test

figure();

plot(alpha_q,gamma_q,'b-',label='sign test');

xlabel(r'α');

ylabel(r'γ');

title(r'ROC curve for Laplace w/mean %.1f, std 1, $n=%d$'

% (theta,n));

xlim(0,1);

ylim(0,1);

grid(True);

plot(alpha_q,alpha_q,'k:')

N = 10**4

x_ji = stats.laplace(scale=np.sqrt(0.5)).rvs(size=(N,n))

xbar_j = np.mean(x_ji,axis=-1)

s_j = np.std(x_ji,ddof=1,axis=-1)

t_j0 = xbar_j / (s_j/np.sqrt(n))

21

t_j1 = (xbar_j+theta) / (s_j/np.sqrt(n))

cmin = -3

cmax = 3 + theta * np.sqrt(n)

c_t = np.linspace(cmin,cmax,1000)

alpha_t = np.mean(t_j0[None,:] >= c_t[:,None], axis=-1)

gamma_t = np.mean(t_j1[None,:] >= c_t[:,None], axis=-1)

plot(alpha_t,gamma_t,'g--',label=r't-test');

legend(loc='lower right')

savefig('notes05_roc_laplace.eps',bbox_inches='tight');

0.0 0.2 0.4 0.6 0.8 1.0
α

0.0

0.2

0.4

0.6

0.8

1.0

γ

ROC curve for Laplace w/mean 0.2, std 1, n=100

sign test
t-test

We see that, for a normal sampling distribution the t-test has
a higher power γ at any given significance α, while for Laplace,
the situation is reversed.

Since hypothesis tests get more interesting the lower the false
alarm probability α, it’s sometimes helpful to do the ROC plot

with α on a log scale:

figure();

semilogx(alpha_q,gamma_q,'b-',label='sign test');

semilogx(alpha_t,gamma_t,'g--',label=r't-test');

semilogx(alpha_q,alpha_q,'k:');

xlabel(r'α');

ylabel(r'γ');

title(r'ROC curve for Laplace w/mean %.1f, std 1, $n=%d$'

% (theta,n));

legend(loc='upper left');

xlim(1e-3,1);

ylim(0,1);

grid(True);

savefig('notes05_roc_laplace_log.eps',bbox_inches='tight');

10-3 10-2 10-1 100
α

0.0

0.2

0.4

0.6

0.8

1.0

γ

ROC curve for Laplace w/mean 0.2, std 1, n=100

sign test
t-test

22

4.3 Asymptotic Relative Efficiency

The final measure we’ll consider is the one mentioned most fre-
quently in Conover, and defined in Section 2.4. We consider
two tests with the same significance α = α1 = α2 and power
γ = γ1 = γ2. In order to acheive this, the tests must be applied
to samples of different sizes n1 6= n2. The relative efficiency
of test 2 relative to test 1 is n1

n2
. (The more efficient test can

acheive the same significance and power with a smaller sample
size.) In the limit that the sample size becomes large, this is
known as the asymptotic relative efficiency (A.R.E.).

This is sort of tricky to estimate numerically, since you don’t
know ahead of time what sample size you’ll need for each test.
One trick we can use is to fix the significance α and effect size θ,
and then calculate the power γ for the test at a bunch of different
sample sizes n. We can then plot n versus γ and compare the n
for different tests at the same γ. As n becomes large, we know γ
will get close to 1, so the best approach is actually to calculate
the false dismissal probability β = 1 − γ and then plot β on a
logarithmic scale. We also want the scale for n to be logarithmic,
since we want to eyeball the ratio of different n at the same γ
value, which will correspond to the separation on a log scale. We
first plot this for the sign test, where the threshold cq is the 1−α
quantile of the Bin(n, 0.5) distribution (i.e., a different threshold
for every n), and the false dismissal probability β = 1− γ is the
probability that a Bin(n, pθ) random variable will fall below that
threshold, where pθ is the fraction of the sampling distribution
to the right of the origin when the location parameter is θ. We
do this for a N(θ, 1) sampling distribution:

from __future__ import division

import numpy as np

from scipy import stats

alpha = 0.05

theta = 0.2

p0 = 0.5

p1 = stats.norm(loc=theta).sf(0); p1

n = np.array(np.logspace(2,5,100),dtype=int)

c_q = stats.binom(n,p0).isf(alpha)

beta_q = stats.binom(n,p1).cdf(c_q)

figure();

loglog(beta_q,n,'b-',label='sign test');
title(r'Relative Efficiency for $N(%.1f,1)$, $\alpha

=%g$' % (theta,alpha));

xlabel(r'$1-\gamma$');
ylabel(r'n');
grid(True);

Now for the t-test, we really don’t want to do a Monte Carlo
which we’d have to re-do for each sample size n we’re trying
out. Instead, we rely on the central limit theorem, which tells
us that, for large n, the t-statistic is approximately a N(θ

√
n, 1)

random variable, and

P (T ≤ c) ≈ Φ
(
c− θ

√
n
)

(4.7)

c_z = stats.norm.isf(alpha)

beta_z = stats.norm(loc=theta*np.sqrt(n)).cdf(c_z)

loglog(beta_z,n,'g--',label=r't-test (CLT approx)');

legend(loc='lower left');

savefig('notes05_re_gauss.eps',bbox_inches='tight');

23

10-29210-26910-24610-22310-20010-17710-15410-13110-10810-85 10-62 10-39 10-16

1−γ

102

103

104

105

n

Relative Efficiency for N(0.2,1), α=0.05

sign test
t-test (CLT approx)

We can see that, as the curves go to large n (in the upper left-
hand part of the figure, they seem to have a constant difference
between them, and by eyeballing the fact that the sign test curve
hits the left edge at around 6 × 104 and the t-test curve would
be extrapolated to around 4× 104, it looks like we might expect
the A.R.E. of the t-test relative to the sign test to be 1.5 or
so. We also notice that neither of the curves actually makes
it up to 105 because the β calculation is underflowing, and the
binomial cdf in the sign test does so sooner than the normal
cdf in the t test. This suggests that we should use some sort of
asymptotic approximation, and in fact this is used in the actual
computation of the limiting case.

The calculation of A.R.E. is complicated in general, but it’s
made somewhat simpler if we recall that for large sample sizes

most test statistics are approximately normally distributed. So
for the sign test, the statistic is

Zq =
N+ − n/2√

n/2
(4.8)

while for the t test, it is

Zt =
X√
S2/n

(4.9)

under H0, both are standard normal, and so we reject if the
statistic exceeds z1−α. If the location parameter is θ under H1,
then E(N+) = npθ and V (N+) = npθ(1− pθ), so

E(Zq) =
npθ − n/2√

n/2
=
√
n(2pθ − 1) (4.10a)

Var(Zq) =
4

n
npθ(1− pθ) = 4pθ(1− pθ) (4.10b)

and

γq ≈ P (Zq > z1−α) = 1− Φ

(
z1−α −

√
nq(2pθ − 1)√

4pθ(1− pθ)

)
(4.11)

where

Φ(z) =
1

2π

∫ z

−∞
e−t

2/2 dt (4.12)

is the standard normal cdf. Similarly, if the sampling distribu-
tion is N(θ, 1), then E(X) = θ and V (X) = 1/n, and

E(Zt) = θ
√
n and Var(Zt) = 1 (4.13)

so

γt ≈ P (Zt > z1−α) = 1− Φ (z1−α − θ
√
nt) (4.14)

24

Now, in order to ensure that γq = γt, we must have

√
nq(2pθ − 1)− z1−α√

4pθ(1− pθ)
≈ θ
√
nt − z1−α (4.15)

It seems like in general nq/nt will depend on both θ and α, and
the θ dependence doesn’t look like it will go away even when
n→∞. But, since we’re supposed to carry out the comparison
at fixed α and γ, as we send the sample size to infinity, we have
to send the effect size θ to zero, which means pθ → 1

2
. Thus we

can (to leading order) set the denominator on the left-hand size
to one, which leaves us with

√
nq(2pθ − 1)− z1−α ≈ θ

√
nt − z1−α (4.16)

and
nq
nt

= lim
θ→0

(
θ

2pθ − 1

)2

(4.17)

we can use l’Hôpital’s rule to deal with the limit, or just ex-
pand the form of pθ to first order for small θ. If the sampling
distribution is normal,

pθ =
1√
2π

∫ ∞
0

e−(x−θ)
2/2 dx =

1√
2π

∫ θ

−∞
e−z

2/2 dz

=
1

2
+

1√
2π

∫ θ

0

e−z
2/2 dz ≈ 1

2
+

θ√
2π
e−0

2/2

(4.18)

so

lim
θ→0

θ

2pθ − 1
= lim

θ→0

θ

2θ/
√

2π
=

√
π

2
(4.19)

and
A.R.E. =

π

2
≈ 1.57 (4.20)

which is about the value we eyeballed from the plot.

Tuesday 16 October 2018
– Read Section 5.3 of Conover

5 The Conover Squared-Ranks Test

for Equal Variances

So far our rank-based statistical measures have focused on
whether two (or more) samples (either independent or paired)
were drawn from distributions with the same location param-
eter (mean or median). Now let’s consider the question of the
scale parameter, which can be described by the variance or some
more general dispersion. We consider a case where we have two
independent samples {xi|i = 1, . . . , n} and {yj|j = 1, . . . ,m}.
We let the null hypothesis be that these samples were drawn
from equally spread out probability distributions (with possibly
different centers). The alternative hypothesis can be one-sided
(that e.g., the first distribution is more spread out than the sec-
ond) or two-sided (that the dispersions are simply different).

As a reminder, the parametric test in this situation is the
F -test: calculate the sample variance of each sample

s2x =
1

n− 1

n∑
i=1

(xi − x)2 (5.1a)

s2y =
1

m− 1

m∑
j=1

(yj − y)2 (5.1b)

where x = 1
n

∑n
i=1 xi and y = 1

m

∑m
j=1 yj, and threshold on

values of the statistic

F =
s2x
s2y

(5.2)

To do a rank-based nonparametric test, the basic idea is to
take the quantity we’re summing or averaging and then replace

25

it with the ranks of that quantity. In this case we write

U2
i = (xi − x)2 and V 2

j = (yj − y)2 (5.3)

Since the F test considers the relationship of

s2x =
1

n− 1

n∑
i=1

U2
i (5.4a)

s2y =
1

m− 1

m∑
j=1

V 2
j (5.4b)

we should then take all of the {U2
i } and {V 2

j }, rank them in
order, and note the ranks {R(U2

i)} and {R(V 2
j)}. An equivalent

by easier computation is to take the square roots

Ui = |xi − x| and Vj = |yj − y| (5.5)

and rank those instead. Since the mapping from Ui → U2
i is

monotonic, it won’t change the order, and thus we’ll get the
exact same set of ranks if we use {R(Ui)} and {R(Vj)}. So the
obvious thing to do would be to sum the ranks of the {Ui}. It
turns out that you generally get a more powerful test if you
square the ranks before adding them, so the test statistic is

Tu =
n∑
i=1

[R(Ui)]
2 (5.6)

It’s not really obvious that this is the best thing to do, but it sort
of makes sense since parametric measures of variance include a
sum of squares. You will investigate on the homework and see
empirically that

∑n
i=1[R(Ui)]

2 tends to lead to a more powerful
test statistic than

∑n
i=1R(Ui).

Note that, if there are no ties,

n∑
i=1

[R(Ui)]
2+

m∑
j=1

[R(Vj)]
2 =

N∑
r=1

r2 =
N(N + 1)(2N + 1)

6
(5.7)

(The arithmetic identity used is called Faulhaber’s formula, and
we’ve actually already used it in calculating the variance of some
rank-based statistics.) This means that the sum of the [R(Ui)]

2

carries the same information as the sum of the [R(Vj)]
2, which

is the justification behind using [R(Ui)]
2 as the test statistic. If

there are ties, we have to assign the average ranks in the usual
way. But note that, unlike in the case of the sum of ranks, the
sum of squared ranks does not add up to the same constant with
and without ties. This is because e.g.,

2.5 + 2.5 = 5 = 2 + 3 (5.8)

but

(2.5)2+(2.5)2 = 6.25+6.25 = 12.5 6= 22+32 = 4+9 = 13 (5.9)

So in fact if there are ties, the test statistic should be constructed
in a way that involves both sets of squared ranks, i.e., Tx as well
as

Ty =
m∑
j=1

[R(Vj)]
2 (5.10)

As usual, this is done with an eye towards the normal approxi-
mation. The expectation value of the Tu statistic is n times the
averaged squared rank:

E(Tu) = nR2 (5.11)

where

R2 =
1

N

(
n∑
i=1

[R(Ui)]
2 +

m∑
j=1

[R(Vj)]
2

)
=
Tu + Tv
N

(5.12)

If there are no ties, R2 = (N+1)(2N+1)
6

. If there are ties, R2

is determined from the data. You might reasonably complain

26

that E(Tu) should be a fixed number, but like the variance of
other rank-based statistics, it depends on the observed ranks,
specifically on how many ties there are and where. The “dirty
secret” of methods like this is that this is actually a conditional
expectation value, conditional upon the full set of N available
ranks with the actual observed ties taken into account. I.e.,
our statements about expectations, significance, power, etc, all
pertain to repeating the experiment but only considering repe-
titions that have this particular set of ranks including ties. This
is kind of unsatisfying from a frequentist point of view, but it’s
necessary to be able to describe the properties of the test in a
distribution-free way, since you’d have to know the underlying
distribution to know how likely ties are. Note that this is no
big deal to a Bayesian, who is always constructing probabilities
for unknown quantities conditional upon the data which were
actually observed.

In any event, we can see that

Tu − nR2 =
(N − n)Tu − nTv

N
=
mTu − nTv

N
= Tv −mR2

(5.13)
so a statistic based on Tu − nR2 will not only have zero expec-
tation value; it will actually treat the two data samples in a
reasonably symmetric way. It’s thus not too surprising that the
variance of this quantity treats the two samples symmetrically,
i.e.,

Var(Tu − nR2) =
nm

N − 1

(
R4 −

[
R2
]2)

(5.14)

where

R4 =
1

N

(
4∑
i=1

[R(Ui)]
2 +

m∑
j=1

[R(Vj)]
4

)
(5.15)

which is again equal to a constant (1
N

∑N
r=1 r

4 =

(N+1)(2N+1)(3N2+3N−1)
30

) if there are no ties. The statistic

T1 =
Tu − nR2√

nm
N−1

(
R4 −

[
R2
]2) (5.16)

is approximately standard normal (under H0) for large samples,
and can be used to construct hypothesis tests, p-values, etc.

from __future__ import division

import numpy as np

from scipy import stats

import itertools

xi = np.array([15.0, 12.3, 18.0, 13.9])

yj = np.array([18.56, 25.03, 48.1, 1.31, 4.82])

n = len(xi); n

m = len(yj); m

N = n+m; N

xbar = np.mean(xi); xbar

ybar = np.mean(yj); ybar

Ui = np.abs(xi - xbar); Ui

Vj = np.abs(yj - ybar); Vj

UVcombo = np.concatenate((Ui,Vj))

xflags = np.concatenate(([True,]*n,[False,]*m))

yflags = np.bitwise_not(xflags)

ranks = stats.rankdata(UVcombo)

Uranks = ranks[xflags]; Uranks

Vranks = ranks[yflags]; Vranks

np.sum(Uranks)

np.sum(Uranks**2)

np.sort([np.sum(np.array(foo)**2) for foo in

itertools.combinations(range(1,N+1),n)])

np.sort([np.sum(np.array(foo)) for foo in itertools.

combinations(range(1,N+1),n)])

27

5.1 Extension to k-Sample Case

The squared ranks test can be extended to the case of k in-
dependent samples, just as the Kruskal-Wallis test is defined as
the k-sample generalization of the Wilcoxon rank-sum test. The
test statistic is written in terms of the squared ranks

Si =

ni∑
j=1

[R(|xij − xi|)]2 (5.17)

as ∑k
i=1

S2
i

ni
−N(R2)2√

1
N−1

(
R4 −

[
R2
]2) (5.18)

and its null distribution is approximately χ2(k − 1).

Thursday 18 October 2018
– Read Section 5.4 of Conover

6 Measures of Correlation

So far, we’ve considered inferential problems using independent
samples {xi|i = 1, . . . , n} and {yj|j = 1, . . . ,m} (the Wilcoxon-
Mann-Whitney rank sum test and the Conover test for variances,
as well as the Kruskal-Wallis test for more than two samples),
and paired data {(xi, yi)|i = 1, . . . ,m} (the sign test and the
Wilcoxon signed-rank test). In our paired data analysis so far
we were interested in the difference of location parameters, and
so the paired data were immediately converted to a set of differ-
ences di = yi − xi. In fact, all of the paired methods considered
so far can be applied to a single sample {xi} which is just an-
alyzed in the way that the differences {di} are in the standard
paired methods.

Now we’re going to consider a question that uses the full set of
data {(xi.yi)} rather than just the differences yi − xi: how cor-
related are the data? We are really interested in the correlation
of the paired populations or bivariate distribution f(x, y) from
which the paired sample is drawn, but of course it’s the sample
we’ll use to address it. Qualitatively the question is: does X
tend to be large when Y is large, and X large when Y is small?
Recall that if µX = E(X) and µY = E(Y) are the means of the
random variables, σ2

X = Var(X) = E([X−µX]2) = E([X]2)−µ2
X

and σ2
Y = Var(Y) = E([Y − µY]2) = E([Y]2)− µ2

Y are the vari-
ances and Cov(X,Y) = E([X−µX][Y −µY]) = E(XY)−µXµY
is the covariance, the correlation is defined as

Cov(X,Y) =
Corr(X,Y)

σXσY
(6.1)

If the random variables X and Y are independent (so that the
joint distribution can be written f(x, y) = fX(x)fY (y)), there
will be zero correlation, but that’s not the only way to get
Cov(X,Y) = 0. It’s not hard to show that −1 ≤ Cov(X,Y) ≤
1.

6.1 Pearson’s r

The standard parametric estimate of the correlation is to divide
the sample covariance

sxy =
1

n− 1

n∑
i=1

(xi − x)(yi − y) (6.2)

by the product of the sample standard deviations sx and sy; the
ratio

r =
sxy
sxsy

=

∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)2
√∑n

i=1(yi − y)2
(6.3)

28

is known as Pearson’s correlation coëfficient or “Pearson’s r”.
It’s not too hard to see that −1 ≤ r ≤ 1 as well.

We can compute the correlation coëfficient for a paired data
set like this:

0 2 4 6 8 10
xi

2

3

4

5

6

7

8

9

y i

In [1]: from __future__ import division

In [2]: import numpy as np

In [3]: from scipy import stats

In [4]: x = np.array([9.64, 5.91, 3.22, 2.04, 5.49,

9.24, 6.38, 7.79, 0.48, 8.86])

In [5]: y = np.array([5.53, 3.48, 3.16, 2.98, 7.11,

7.75, 3.37, 8.24, 3.00, 3.75])

In [6]: xbar = np.mean(x); xbar

Out[6]: 5.9049999999999994

In [7]: ybar = np.mean(y); ybar

Out[7]: 4.8369999999999997

In [8]: r = np.sum((x-xbar)*(y-ybar))/np.sqrt(np.sum

((x-xbar)**2)*np.sum((y-ybar)**2)); r

Out[8]: 0.59010021965957937

Note that numpy and scipy actually have functions that calcu-
late the correlation coefficient directly:

In [9]: np.corrcoef(x,y)

Out[9]:

array([[1. , 0.59010022],

[0.59010022, 1.]])

In [10]: stats.pearsonr(x,y)

Out[10]: (0.59010021965957937, 0.072524064987892614)

6.2 Spearman’s ρ

A simple non-parametric measure of correlation is to compute
the correlation coëfficient not of the data themselves, but of
the ranks of the data. We do the ranking within each of the
data samples, i.e., the ranks of the {xi} are {Rx

i } and the ranks
of the {yi} are {Ry

i }. Conover calls these R(Xi) and R(Yi),
respectively, but it’s important to note they are two different
sets of ranks, each from 1 to n, and not a single ranking of the
{xi} and the {yi} together. Since each set of ranks has the same
mean (even if there are ties)

R =
1

n

n∑
i=1

Rx
i =

1

n

n∑
i=1

Ry
i =

n+ 1

2
(6.4)

29

the rank correlation coëfficient, known as Spearman’s ρ, is

ρ =

∑n
i=1(R

x
i −R)(Ry

i −R)√∑n
i=1(R

x
i −R)2

√∑n
i=1(R

y
i −R)2

(6.5)

Note that if there are no ties, the sums in the denominator don’t
depend on the data, e.g.,

n∑
i=1

(Rx
i −R)2 =

n∑
i=1

(Rx
i)

2 − 2R
n∑
i=1

Rx
i + nR

2
=

n∑
r=1

r2 − nR2

=
n(n+ 1)(2n+ 1)

6
− n(n+ 1)2

4
=
n(n+ 1)(4n+ 2− 3n− 3

12

=
n(n+ 1)(n− 1)

12
=

n∑
i=1

(Ry
i −R)2 (6.6)

Note that we can also simplify the numerator by noting

n∑
i=1

(Rx
i −R

y
i)

2 =
n∑
i=1

([Rx
i −R]− [Ry

i −R])2

=
n∑
i=1

(Rx
i −R)2 +

n∑
i=1

(Ry
i −R)2 − 2

n∑
i=1

(Rx
i −R)(Ry

i −R)

(6.7)

so, if there are no ties,

ρ = 1− 6

n(n2 − 1)

n∑
i=1

(Rx
i −R

y
i)

2 (no ties) (6.8)

Spearman’s ρ is the correlation coëfficient calculated on the
ranks of the data; we can plot the ranks of the same data set as
before:

1 2 3 4 5 6 7 8 9 10
Rx

i

1

2

3

4

5

6

7

8

9

10

R
y i

and compute ρ as follows:

In [11]: Rx = stats.rankdata(x)

In [12]: Ry = stats.rankdata(y)

In [13]: Rbar = np.mean(Rx); Rbar

Out[13]: 5.5

In [14]: np.mean(Ry)

Out[14]: 5.5

In [15]: rho = np.sum((Rx-Rbar)*(Ry-Rbar))/np.sqrt(

np.sum((Rx-Rbar)**2)*np.sum((Ry-Rbar)**2)); rho

Out[15]: 0.73333333333333328

We can check the simplifying expressions since there are no ties:

In [16]: np.sum((Rx-Rbar)**2)

Out[16]: 82.5

30

In [17]: np.sum((Ry-Rbar)**2)

Out[17]: 82.5

In [18]: n = len(x)

In [19]: (n*(n**2-1))/12.

Out[19]: 82.5

In [20]: 1 - 6/(n*(n**2-1)) * np.sum((Rx-Ry)**2)

Out[20]: 0.73333333333333339

And as before numpy and scipy let us calculate the rank correla-
tion coefficient (but note that the function is called spearmanr()

and not spearmanrho().

In [21]: np.corrcoef(Rx,Ry)

Out[21]:

array([[1. , 0.73333333],

[0.73333333, 1.]])

In [22]: stats.spearmanr(x,y)

Out[22]: (0.73333333333333317, 0.015800596250571581)

To perform a hypothesis test, we need the null distribution of ρ.
If there’s no correlation between the data sets, than the point
with Rx

i = 1 is equally likely to be paired with any of the n y
ranks; the point with Rx

i = 2 is equally likely to be paired with
any of the n−1 y ranks, etc. There are n! different permutations,
In the case of this data, there are 10! = 3 628 800.

In [23]: from scipy.special import factorial

In [24]: factorial(10)

Out[24]: array(3628800.0)

It takes maybe a minute, but python can loop through all of
these permutations and give us a null distribution that we can
use to calculate p-values.

In [26]: import itertools

In [27]: sumsq = np.array([np.sum((ranks-perm)**2)

....: for perm in itertools.permutations(ranks)

], dtype=int)

In [28]: nullrho = 1. - 6./(n*(n**2-1.)) * sumsq

In [29]: 2.*np.mean(nullrho >= rho)

Out[29]: 0.020233134920634922

For larger sample sizes, we’d like to use a normal approximation.
Clearly E(ρ) = 0; it turns out that Var(ρ) = 1

n−1 , which we can
verify:

In [30]: np.mean(nullrho)

Out[30]: -1.0827317878249146e-16

In [31]: np.std(nullrho)

Out[31]: 0.33333333333333331

In [32]: 1./np.sqrt(n-1)

Out[32]: 0.33333333333333331

We can compare the exact two-tailed p-value above to the nor-
mal approximation value:

In [33]: 2*stats.norm.sf(rho*np.sqrt(n-1))

Out[33]: 0.027806895026997232

It’s not a great approximation 2.8% versus 2.0%, but it’s okay.
Note that both of these are different from the 1.6% returned by

31

scipy. In any event, we know that the disribution can’t quite
be normal because the probability for ρ to be above 1 or below
−1 is zero. We can look at how normal things seem with a
histogram:

In [34]: hist(nullrho,bins=100,normed=True);

In [35]: xlabel(r'ρ');

In [36]: ylabel('Null pdf')

Out[36]: <matplotlib.text.Text at 0x7f52d56ba850>

In [37]: savefig('notes05_rhohist.eps',bbox_inches='tight');

−1.0 −0.5 0.0 0.5 1.0
ρ

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Nu
ll

pd
f

We see that there is also some discretization effect!

6.3 Kendall’s τ

A measure of correlation or association coming from a different
starting point is the so-called Kendall τ . This is defined by
considering all of the

(
n
2

)
= n(n−1)

2
pairs of data points, and

counting how many of them are “concordant” and how many
are “discordant”. We say that:

• (xi, yi) and (xj, yj) are concordant if xi > xj and yi > yj,
or xi < xj and yi < yj

• (xi, yi) and (xj, yj) are disccordant if xi > xj and yi < yj,
or xi < xj and yi > yj

• (xi, yi) and (xj, yj) are neither concordant or discordant if
xi = xj and yi = yj.

The ideas of concordant and discordant pairs are easy to grasp
if we visualize them on a scatter plot of the data, as shown in
figure 2. Although the classification into concordant and discor-
dant pairs is not explicitly written in terms of the ranks, we can
see that, since only depends on the ordering of the {xi} and the
ordering of the {yi}, it can be determined from the ranks alone,
as shown in figure 3. The statistic is constructed from Nc, the
number of concordant pairs, and Nd, the number of discordant
pairs. If there are no ties,

Nc +Nd =
n(n− 1)

2
(6.9)

and we can define the Kendall tau statistic

τ =
Nc −Nd

Nc +Nd

=
2(Nc −Nd)

n(n− 1)
no ties (6.10)

where the denominator was chosen so that −1 ≤ τ ≤ 1.
There are actually a few different prescriptions to handle ties.

Conover advocates considering any pair with xi 6= xj and yi = yj

32

0 2 4 6 8 10
xi

2

3

4

5

6

7

8

9

y i

0 2 4 6 8 10
xi

2

3

4

5

6

7

8

9

y i

Figure 2: Concordant (left) and discordant (right) pairs. A concordant pair is one where the pair of data points is “northeast” and “southwest”
of each other, as you’d expect for positively correlated populations. A discordant pair is one where the pair of data points is “northwest” and
“southeast” of each other, as you’d expect for negatively correlated populations.

to be hald-concordant and half-discordant, and thus contributed
1
2

to Nc and 1
2

to Nd. This won’t change the numerator of τ ,
since these contributions cancel out of Nc−Nd, but it will change
the denominator.

We can count the number of concordant and discordant pairs,
and compute τ , for the data above. We pause for a moment to
consider how to automatically identify concordant and discor-
dant pairs. Consider the first two points:

In [38]: x[:2],y[:2]

Out[38]: (array([9.64, 5.91]), array([5.53, 3.48]))

In [39]: (x[0]>x[1]),(y[0]>y[1])

Out[39]: (True, True)

We see that x1 > x2 and y1 > y2, so this is a conccordant pair.
We’d like to combine the information in such a way that two
trues or two falses will flag the pair as concordant. We can
accomplish this with the logical “exclusive or”, which is true
if exactly one of the two statements is true, but false if they
are both true or both false. So we want “NOT (xi > xj XOR
yi > yj)” for concordant and “NOT (xi > xj XOR yi < yj)” for
discordant. (This will actually still have trouble with ties, since
it will mark a pair with xi = xj and yi = yj as both concordant
and disccordant.)

In [40]: True^True

Out[40]: False

In [41]: not(True^True)

Out[41]: True

33

1 2 3 4 5 6 7 8 9 10
Rx

i

1

2

3

4

5

6

7

8

9

10

R
y i

1 2 3 4 5 6 7 8 9 10
Rx

i

1

2

3

4

5

6

7

8

9

10

R
y i

Figure 3: The concordant (left) and discordant (right) pairs from figure 2, shown in terms of ranks.

In [42]: not(True^False)

Out[42]: False

In [43]: not(False^True)

Out[43]: False

In [44]: not(False^False)

Out[44]: True

In [45]: not((x[0]>x[1])^(y[0]>y[1]))

Out[45]: True

We sum these up for all the pairs, and find Nc = 35 and Nd = 10:

In [46]: Nc = np.sum([not((x[i]>x[j])^(y[i]>y[j]))

for (i,j) in itertools.combinations(xrange(n),2)

]); Nc

Out[46]: 35

In [47]: Nd = np.sum([not((x[i]>x[j])^(y[i]<y[j]))

for (i,j) in itertools.combinations(xrange(n),2)

]); Nd

Out[47]: 10

In [48]: np.sum([not((Rx[i]>Rx[j])^(Ry[i]>Ry[j]))

....: for (i,j) in itertools.combinations(xrange

(n),2)])

Out[48]: 35

In [49]: np.sum([not((Rx[i]>Rx[j])^(Ry[i]<Ry[j]))

....: for (i,j) in itertools.combinations(xrange

(n),2)])

Out[49]: 10

From these, we compute τ = 35−10
45

= 5
9
:

In [50]: tau = (Nc-Nd)/(Nc+Nd); tau

34

Out[50]: 0.55555555555555558

And of course there’s a scipy function which does it for us and
estimates a two-sided p-value of 2.53%:

In [51]: stats.kendalltau(x,y)

Out[51]: (0.55555555555555569, 0.025347322573947558)

Again, to get the null distribution, we assume any of the 10!
rank pairings is equally likely. This takes a little longer to run
in python, but it’s still bearable:

In [52]: Ncdist = np.array([np.sum([not((ranks[i]>

ranks[j])^(perm[i]>perm[j])) for (i,j) in

itertools.combinations(xrange(n),2)]) for perm in

itertools.permutations(ranks)])

In [53]: Npairs = n*(n-1)//2; Npairs

Out[53]: 45

In [54]: Nddist = Npairs - Ncdist

We can plot a histogram of this distribution:

In [55]: figure();

In [56]: hist(Ncdist,bins=np.arange(Npairs+1))

Out[56]:

(array([1.00000000e+00, 9.00000000e+00, 4.40000000e

+01,

1.55000000e+02, 4.40000000e+02, 1.06800000e

+03,

2.29800000e+03, 4.48900000e+03, 8.09500000e

+03,

1.36400000e+04, 2.16700000e+04, 3.26830000e

+04,

4.70430000e+04, 6.48890000e+04, 8.60540000e

+04,

1.10010000e+05, 1.35853000e+05, 1.62337000e

+05,

1.87959000e+05, 2.11089000e+05, 2.30131000e

+05,

2.43694000e+05, 2.50749000e+05, 2.50749000e

+05,

2.43694000e+05, 2.30131000e+05, 2.11089000e

+05,

1.87959000e+05, 1.62337000e+05, 1.35853000e

+05,

1.10010000e+05, 8.60540000e+04, 6.48890000e

+04,

4.70430000e+04, 3.26830000e+04, 2.16700000e

+04,

1.36400000e+04, 8.09500000e+03, 4.48900000e

+03,

2.29800000e+03, 1.06800000e+03, 4.40000000e

+02,

1.55000000e+02, 4.40000000e+01, 1.00000000e

+01]),

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11,

12, 13, 14, 15, 16,

17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,

28, 29, 30, 31, 32, 33,

34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44,

45]),

<a list of 45 Patch objects>)

In [57]: xlabel(r'N_c');

In [58]: ylabel('#');

35

In [59]: title('# of concordant pairs (null dist)')
Out[59]: <matplotlib.text.Text at 0x7f058a875e50>

In [60]: savefig('notes05_tauhist.eps',bbox_inches='
tight');

0 5 10 15 20 25 30 35 40 45
Nc

0

50000

100000

150000

200000

250000

300000

#

of concordant pairs (null dist)

and from this we get the null distribution of τ statistic:

In [61]: taudist = (Ncdist-Nddist)/Npairs

In [62]: min(taudist),max(taudist)

Out[62]: (-1.0, 1.0)

It should be apparent that the null distribution has E(τ) =
0. The variance can be computed theoretically to be Var(τ) =
2(2n+5)
9n(n−1) , which we can verify for n = 10:

In [63]: np.mean(taudist)

Out[63]: 3.0577147711722124e-17

In [64]: np.var(taudist)

Out[64]: 0.061728395061728412

In [65]: 2*(2*n+5)/(9*n*(n-1))

Out[65]: 0.06172839506172839

In [66]: sigtau = np.sqrt(2*(2*n+5)/(9*n*(n-1))); sigtau

Out[66]: 0.24845199749997662

Now we can compare the exact p-value with the value from the
normal distribution:

In [67]: 2*np.mean(Ncdist>=Nc)

Out[67]: 0.028609457671957671

In [68]: 2*np.mean(taudist>=tau)

Out[68]: 0.028609457671957671

In [69]: 2*stats.norm.sf(tau/sigtau)

Out[69]: 0.025347318677468252

Note that the p-value reported by stats.kendalltau() above
is the 2.53% from the normal approximation; the exact p-value
is 2.86%.

36

Thursday 18 October 2018
– Read Section 5.8 of Conover

7 The Friedman and Quade Tests

7.1 The Complete Block Design

So far in our study of rank-based tests we’ve considered both
paired and independent samples. We can categorize them as:

• Independent samples

– Two independent samples: Wilcoxon rank sum
(Mann-Whitney), Conover squared ranks

– k independent samples: Kruskal-Wallis (generalization
of rank sum), Conover squared ranks

• Paired samples

– Two paired samples: Sign test, Wilcoxon signed rank
(also correlation coëfficients)

We now consider the extension of the paired-samples case to the
case where instead of pairs of observations we have a set of k
observations. Each set of observations is called a block, and we
refer to the number of blocks as b (this was called n in the paired-
samples case). The k observations in the block are sometimes
referred to as treatments, a nomenclature which comes from an
experimental design where you have b groups of k subjects each.
The subjects within the “block” are assumed to be identical, but
the different blocks may not be. One subject from each block
receives each of the k treatments. This is known as a randomized
complete block design. (The “randomized” part is because it’s
randomly selected which of the k members of each block receives

which treatment.) The output is a b× k matrix of observations:

{Xij} =


X11 X12 · · · X1k

X21 X22 · · · X2k
...

...
. . .

...
Xb1 Xb2 · · · Xbk

 (7.1)

The null hypothesis is that, within a block, each of the treat-
ments is as likely to give a larger or smaller result than another,
P (Xij >Xi` = P (Xij <Xi`). We define {Rij|j = 1, . . . , k} to be
the ranks of the responses to the k treatments within block i,
and let

Rj =
b∑
i=1

Rij (7.2)

be the sum of ranks for treatment j. Note that the minimum
possible value for Rj is b and the maximum is kb. To give a
specific example:

In [1]: from __future__ import division

In [2]: import numpy as np

In [3]: from scipy import stats

In [4]: Xij = np.array([[2. , 19.86, 9.17],

...: [1.05, 3.1 , 3.34],

...: [0.14, 25.4 , 26.59],

...: [14.6 , 3.93, 10.95]])

In [5]: b,k = np.shape(Xij)

In [6]: Rij = stats.mstats.rankdata(Xij,axis=-1); Rij

Out[6]:

37

array([[1., 3., 2.],

[1., 2., 3.],

[1., 2., 3.],

[3., 1., 2.]])

In [7]: Rj = np.sum(Rij,axis=0); Rj

Out[7]: array([6., 8., 10.])

The sums of the ranks for each treatment are

R1 = 1 + 1 + 1 + 3 = 6 (7.3a)

R2 = 3 + 2 + 2 + 1 = 8 (7.3b)

R3 = 2 + 3 + 3 + 2 = 10 (7.3c)

7.2 The Friedman Test

The simplest test observes that since, under the null hypothesis,
E(Rij) = k+1

2
and, if there are no ties, Var(Rij) = k(k+1)

12
, and

since the ranks of a given treatment within different blocks can
be treated as independent random variables, we have E(Rj) =
b(k+1)

2
and, if there are no ties, Var(Rj) = bk(k+1)

12
. This means

that

T1 =
12

bk(k + 1)

k∑
j=1

(
Rj −

b(k + 1)

2

)2

(7.4)

should be approximately chi-squared distributed with k − 1
degrees of freedom, under the null hypothesis. (The number
of degrees of freedom is k − 1 because of the constraint that∑k

j=1Rj = bk(k+1)
2

.) This test is known as the Friedman test,
after economist Milton Friedman.

We can evaluate this for the data above, and get the following

In [8]: T1 = (12/(b*k*(k+1)))*np.sum((Rj-0.5*b*(k+1))**2); T1

Out[8]: 2.0

In [9]: stats.chi2(df=k-1).sf(T1)

Out[9]: 0.36787944117144233

In [10]: stats.friedmanchisquare(Xij[:,0],Xij[:,1],Xij[:,2])

Out[10]: (2.0, 0.36787944117144233)

but note that the normal approximation that leads to the ap-
proximate chi-squared distribution is not very good for this small
sample size. Conover asserts that we get a better approximation
with the transformed statistic10

T2 =
(b− 1)T1

b(k − 1)− T1
(7.5)

which should have an F distribution with degree-of-freedom pa-
rameters k − 1 and (b− 1)(k − 1).

In [11]: T2 = ((b-1)*T1)/(b*(k-1)-T1); T2

Out[11]: 1.0

In [12]: stats.f(k-1,(b-1)*(k-1)).sf(T2)

Out[12]: 0.421875

An interesting exercise is to work out the exact distribution for
these statistics for this case. In general there are (k!)b different
arrangements of ranks possible with no ties; in this case that is
64 = 1296.

Note that, although we use ranks, this is actually the k-sample
analogy of the sign test. The rankings within a block correspond
to the sign of yi−xi, which we could rename as Xi2−Xi1, which
is equivalent to the ordering of Xi1 and Xi2.

10This statistic comes from applying two-way ANOVA to the ranks.

38

7.3 The Quade Test

To get an analog of the Wilcoxon signed rank statistic11, we need
the equivalent of the magnitude of the difference. The obvious
choice is the spread of the values Xij within block i, which we
write as

Mi = max
j
Xij −min

j
Xij (7.6)

The ranks of these are called Qi, and the equivalent of the signed
ranks are then

Sij = Qi

(
Rij −

k + 1

2

)
(7.7)

Qi are the ranks and the quantity in parentheses is the gen-
eralization of the sign of the difference. The statistic is then
constructed out of the sums of these,

Sj =
b∑
i=1

Sij (7.8)

and the test statistic is

T3 =
(b− 1)1

b

∑k
j=1 S

2
j∑b

i=1

∑k
j=1 S

2
ij − 1

b

∑k
j=1 S

2
j

(7.9)

which is again supposed to be F (k−1, (b−1)(k−1))-distributed.
It seems as though the statistic depends on more than just the
{Sj} due to the first term in the denominator, but that is only

true if there are ties. If there are no ties,
∑b

i=1

∑k
j=1 S

2
ij has a

fixed, if somewhat complicated, value in terms of b and k.
We can calculate this for the data above:

In [13]: Mi = np.max(Xij,axis=-1)-np.min(Xij,axis=-1); Mi

11This is known as the Quade test: Quade, Journal of the American Sta-
tistical Association, 74, 680. https://www.jstor.org/stable/2286991

Out[13]: array([17.86, 2.29, 26.45, 10.67])

In [14]: Qi = stats.rankdata(Mi); Qi

Out[14]: array([3., 1., 4., 2.])

In [15]: Sij = Qi[:,None]*(Rij-0.5*(k+1)); Sij

Out[15]:

array([[-3., 3., 0.],

[-1., 0., 1.],

[-4., 0., 4.],

[2., -2., 0.]])

In [16]: Sj = np.sum(Sij,axis=0); Sj

Out[16]: array([-6., 1., 5.])

In [17]: B = np.sum(Sj**2)/b; B

Out[17]: 15.5

In [18]: A2 = np.sum(Sij**2); A2

Out[18]: 60.0

In [19]: b*(b+1)*(2*b+1)*k*(k**2-1)/72

Out[19]: 60.0

In [20]: T3 = (b-1)*B/(A2-B); T3

Out[20]: 1.0449438202247192

In [21]: stats.f(k-1,(b-1)*(k-1)).sf(T3)

Out[21]: 0.40796817129629637

39

https://www.jstor.org/stable/2286991

	The Wilcoxon Signed Rank Test
	Ties
	Confidence Interval for the Median Difference

	The Wilcoxon-Mann-Whitney Rank Sum Test
	Normal Approximation
	Rank-Sum Intervals

	The Kruskal-Wallis Test
	Comparisons of Power and Efficiency
	Power Curves
	ROC Curves
	Asymptotic Relative Efficiency

	The Conover Squared-Ranks Test for Equal Variances
	Extension to k-Sample Case

	Measures of Correlation
	Pearson's r
	Spearman's
	Kendall's

	The Friedman and Quade Tests
	The Complete Block Design
	The Friedman Test
	The Quade Test

