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From time to time one considers the question: does a data sam-
ple {xi} seem like it could have come from a particular distribu-
tion. E.g., on the first prelim exam, you examined the relative
power of the t-test and sign test on data with the following his-
togram:
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Since the data were not drawn from a normal distribution (as
evidenced by the long tails), the t-test was not the most powerful
option. But how does one quantify how different a data sample
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looks from the expectation under some hypothesized distribu-
tion? That is the topic of the tests we consider now, starting
with variants of the Kolmogorov-Smirnov test.

1 The Kolmogorov Test

1.1 Test Statistic(s)

In the example above we drew a histogram, and one could
imagine comparing the shape of that histogram to the prob-
ability density function of a hypothesized continuous distribu-
tion. However, that involves a somewhat arbitrary choice in
how the bins of the histogram are chosen. Kolmogorov-Smirnov
tests instead base their comparisons on the cumulative distribu-
tion function. The hypotheses concern a comparison between
the true cdf F (x) associated with the sampling distribution and
some hypothesized cdf F ∗(x). The null hypothesis H0 is that
F (x) = F ∗(x) for all x. The alternative hypothesis can be:

• Two-sided: F (x) 6= F ∗(x) for some (unspecified) x

• One-sided: F (x) < F ∗(x) for some (unspecified) x

• One-sided: F (x) > F ∗(x) for some (unspecified) x

Recall that back at the start of the course, we defined the em-
pirical cdf F̂ (x; {xi}) (which Conover calls S(x)) as the fraction
of sample values with xi ≤ x for a given x, i.e.,

F̂ (x; {xi}) =
1

n

n∑
i=1

I[xi ≤ x] (1.1)

We use as test statistics the maximum separation between the
curves F̂ (x; {xi}) and F ∗(x):

T+ = sup
x

[F ∗(x)− F̂ (x; {xi})] (1.2a)

T− = sup
x

[F̂ (x; {xi})− F ∗(x)] (1.2b)

T = max(T+, T−) = sup
x

∣∣∣F ∗(x)− F̂ (x; {xi})
∣∣∣ (1.2c)

We can illustrate this for a particular sample of data, under the
null hypothesis that they are drawn from a standard normal dis-
tribution, plotting the empirical and hypthesized distributions:

In [1]: from __future__ import division

In [2]: import numpy as np

In [3]: from scipy import stats

In [4]: xi = np.array([-1.82, 0.72, 1.67, 1.09,

0.64, 0.81, 1.74, -0.80, -0.13, 1.12])

In [5]: n = len(xi); n

Out[5]: 10

In [6]: x = np.linspace(-3,3,6001)

In [7]: Fhat = np.mean(xi[None,:] <= x[:,None],axis

=-1)

In [8]: Fstar = stats.norm.cdf(x)

In [9]: figure();
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In [10]: plot(x,Fhat,'b-',lw=2,label=r'$\hat{F}(x,\{
x_i\})$');

In [11]: plot(x,Fstar,'r--',lw=2,label=r'$F^*(x)$');

In [12]: ip = np.argmax(Fstar-Fhat); x[ip]

Out[12]: 0.63900000000000023

In [13]: im = np.argmax(Fhat-Fstar); x[im]

Out[13]: -1.8200000000000001

In [14]: annotate('',xy=(x[ip],Fstar[ip]),xycoords='
data',xytext=(x[ip],Fhat[ip]),textcoords='data',
arrowprops=dict(arrowstyle='<->'));

In [15]: annotate('',xy=(x[im],Fstar[im]),xycoords='
data',xytext=(x[im],Fhat[im]),textcoords='data',
arrowprops=dict(arrowstyle='<->'));

In [16]: xlabel(r'$x$');

In [17]: ylabel('cdf');

In [18]: legend(loc='upper left');

In [19]: Tp = max(Fstar-Fhat); Tp

Out[19]: 0.43858853405513848

In [20]: Tm = max(Fhat-Fstar); Tm

Out[20]: 0.065620497554110035
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We’ve indicated on the plot the location of T+ = supx[F
∗(x)−

F̂ (x; {xi})] ≈ 0.439 and T− = supx[F̂ (x; {xi})− F ∗(x)] ≈ 0.066
on the plot. We notice that T− occurs right at the data point
xi = −1.82 and T+ occurs right before the data point xi = 0.64.

In [21]: x[ip+1]

Out[21]: 0.64000000000000012

If the hypothesized distribution is continuous, the maximum and
minimum of [F ∗(x)−F̂ (x; {xi}) will always occur at the location
of actual data points, where the empirical distribution function
F̂ (x; {xi}) makes discontinous jumps. In particular, T− always
occurs right after a jump and T+ right before a jump. That
means we don’t actually need to check the cdfs for all x values,
only those right before and after actual data points:
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In [22]: xisort = np.sort(xi)

In [23]: Fstari = stats.norm.cdf(xisort)

In [24]: plot(xisort,Fstari,'k*',ms=10);

In [25]: savefig('notes06_cdfs.eps',bbox_inches='tight');

In [26]: Fhatip = np.arange(n)/n

In [27]: Fhatim = (1+np.arange(n))/n

In [28]: xisort[np.argmax(Fstari-Fhatip)]

Out[28]: 0.64000000000000001

In [29]: max(Fstari-Fhatip)

Out[29]: 0.43891370030713844

In [30]: xisort[np.argmax(Fhatim-Fstari)]

Out[30]: -1.8200000000000001

In [31]: max(Fhatim-Fstari)

Out[31]: 0.065620497554110035

1.2 p-Value for Continuous Distributions

To get the p-value assocated with T+ and/or T−, we need to
consider their null distribution; for either statistic, the null dis-
tribution is the Kolmogorov distribution, with a single param-
eter p. This distribution has a number of forms and some-
what complicated derivations, but a relatively straightforward
form appears in Z. W. Birnbaum and Fred H. Tingey, An-
nals of Mathematical Statistics 22, 592 (1951), available at

http://dx.doi.org/10.1214/aoms/1177729550:

P (T± ≥ t±) = t±
[n(1−t±)]∑
j=0

(
n

j

)(
1− t± − j

n

)n−j (
t± +

j

n

)j−1
(1.3)

where [n(1 − t±)] is the largest integer less than or equal to
n(1 − t±), and

(
n
j

)
= n!

j!(n−j)! is the usual binomial coëfficient.
Note that we can split out the j = 0 term in the sum and write

P (T± ≥ t±)

= (1−t±)n+t±
[n(1−t±)]∑
j=1

(
n

j

)(
1− t± − j

n

)n−j (
t± +

j

n

)j−1
;

(1.4)

in this form, it’s apparent that P (T± ≥ 0) = 1. We can un-
derstand that T+ and T− cannot be negative, since F̂ (x; {xi})
will be zero for x below the lowest value in the sample (which
means F ∗(x) − F̂ (x; {xi}) cannot be negative everywhere) and
F̂ (x; {xi}) will be one for x above the highest value in the sam-
ple (which means F̂ (x; {xi})− F ∗(x) cannot be negative every-
where). We can implement this sum, and calculate the one-
sided p-value associated with T+ ≈ 0.439, and likewise with
T− ≈ 0.066:

In [33]: n_p = int(n*(1-Tp)); n_p

Out[33]: 5

In [34]: Tp * np.sum([binom(n,j)*(1-Tp-j/n)**(n-j)*(

Tp+j/n)**(j-1) for j in range(n_p+1)])

Out[34]: 0.014367272324540398

In [35]: n_m = int(n*(1-Tm)); n_m

Out[35]: 9

4

http://dx.doi.org/10.1214/aoms/1177729550


In [36]: Tm * np.sum([binom(n,j)*(1-Tm-j/n)**(n-j)*(

Tm+j/n)**(j-1) for j in range(n_m+1)])

Out[36]: 0.88373135523717439

And so the two-sided p-value is 0.028, which indicates that these
data are not consistent, at the 3% level, with being sampled from
a standard normal distribution.

Incidentally, we can plot the tail probability for this sample
size:

In [37]: Tpmvals = np.linspace(1e-4,1,100)

In [38]: tailprobs = np.array([Tpm * np.sum([binom(n

,j)*(1-Tpm-j/n)**(n-j)*(Tpm+j/n)**(j-1) for j in

range(int(n*(1-Tpm))+1)]) for Tpm in Tpmvals])

In [39]: figure();

In [40]: plot(Tpmvals,tailprobs);

In [41]: xlabel(r'$t^{\pm}$');

In [42]: ylabel(r'$P(T^{\pm}>t^{\pm})$');

In [43]: title(r'Kolmogorov tail probs for $n=%d$'%n
);

In [44]: savefig('notes06_Ktail.eps',bbox_inches='
tight');
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For large n (more than about 40), we can use the asymptotic
expression

P (T± ≥ t±) ≈ e−2n(t
±)2 (1.5)

Obviously, it won’t be good for n = 10, but we can check it:

In [47]: T95 * np.sum([binom(n,j)*(1-T95-j/n)**(n-j)

*(T95+j/n)**(j-1) for j in range(int(n*(1-T95))

+1)])

Out[47]: 0.025111729583049587

and the one-sided p-value of 2.5% is indeed a bit off from the
exact value of 1.4%.
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1.3 Distribution Confidence Interval

We can use the Kolmogorov test to define a confidence interval
associated with the point estimate F̂ (x; {xi}). E.g., for a 95%
confidence interval, we should take the 97.5th percentile of the
Kolmogorov distribution, t±0.975 = t0.95, and set the ends of the
confidence interval as

F̂ (x; {xi})± t0.95 ; (1.6)

if the hypothesized cdf is within those limits, the empirical
cdf will be close enough that the p-value of the two-sided Kol-
mogorov test will be above 5%. Of course, we also know that
for any cdf, 0 ≤ F (x) ≤ 1, so if the upper end of the interval
goes above 1, we set it to 1, and likewise if the lower end goes
below zero. We can’t easily use the expression (1.4) to get the
quantiles of the Kolmogorov distribution, but we can look them
up, e.g., in Table A13 of Conover, and check that they give the
right tail probabilities. That table says that the threshold for a
one-tailed test at the 97.5% level, or a two-tailed test at 95%, is
0.409. We check this using our formula:

In [45]: T95 = 0.409

In [46]: T95 * np.sum([binom(n,j)*(1-T95-j/n)**(n-j)

*(T95+j/n)**(j-1) for j in range(int(n*(1-T95))

+1)])

Out[46]: 0.025111729583049587

and it does indeed give a tail probability of about 2.5%. Now
we can construct and plot the confidence interval on the cdf:

In [47]: F95lower = np.maximum(0.,Fhat-T95)

In [48]: F95upper = np.minimum(1.,Fhat+T95)

In [49]: figure();

In [50]: fill_between(x,F95upper,F95lower,edgecolor='b',
color=[0.9,0.9,0.9],label='95\% CI');

In [51]: plot(x,Fhat,'b-',lw=2,label=r'$\hat{F}(x,\{x_i
\})$');

In [52]: plot(x,Fstar,'r--',lw=2,label=r'$F^*(x)$');

In [53]: xlabel(r'$x$');

In [54]: ylabel('cdf');

In [55]: legend(loc='upper left');

In [56]: savefig('notes06_CI.eps',bbox_inches='tight');
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We’ve also plotted the standard normal CDF for reference. You
can see that it does indeed pass outside the region associated
with the 95% confidence interval, which we expect since we
found a two-sided p-value of 0.028 < 0.05.

1.4 p-Value for Discrete Distributions

Tuesday 30 October 2018
– Read Section 6.2 of Conover

2 Tests for Families of Distributions

2.1 The Lilliefors Test for Normality

The Kolmogorov test assumes we have a single distribution with
cdf F ∗(x) to which we want to compare the data. But often we
want to know if the sampling distribution comes from a family
of distributions, e.g., the null hypothesis is that it is a normal
distribution with some unspecified parameters µ and σ. An
obvious generalization is to estimate µ and σ from the data.
The statistic is then

T = sup
x

∣∣∣∣Φ(x− xs
)
− F̂ (x; {xi})

∣∣∣∣ (2.1)

where Φ
(
x−µ
σ

)
is the cdf of a normal distribution with mean µ

and standard deviation σ. When the parameters of the distri-
bution are estimated from the data, the test is known as the
Lilliefors Test.

As an example, consider a very slightly modified version of
the data set from the prelim, which has histogram
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In [1]: from __future__ import division

In [2]: import numpy as np

In [3]: from scipy import stats

In [4]: xi = np.loadtxt('notes06_prelim.dat')

In [5]: n = len(xi); n

Out[5]: 100

In [6]: xbar = np.mean(xi); xbar

Out[6]: -0.34903401460401001

In [7]: s = np.std(xi); s

Out[7]: 1.8482707855708738

In [8]: xi.sort()

In [9]: Fhatip = np.arange(n)/n

In [10]: Fhatim = (1+np.arange(n))/n
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In [11]: stardist = stats.norm(loc=xbar,scale=s)

In [12]: Fstari = stardist.cdf(xi)

In [13]: Tp = max(Fstari-Fhatip); Tp

Out[13]: 0.10591766131171515

In [14]: Tm = max(Fhatim-Fstari); Tm

Out[14]: 0.11233110037923455

As before, we don’t need to calculate the difference between the
empirical cdf F̂ (x; {xi}) at every possible x, just at the actual
data values, using

F̂ (xi; {xi}) =
i

n
(2.2a)

F̂ (xi − ε; {xi}) =
i− 1

n
(2.2b)

(2.2c)

Note that the test is equivalent to first converting the data {xi}
using

zi =
xi − x
s

(2.3)

and then constructing the Kolomogorov statistics of the {zi}
where the target distribution is standard normal:

In [15]: zi = (xi - xbar)/s

In [16]: Fstarzi = stats.norm.cdf(zi)

In [17]: max(Fstari-Fhatip)

Out[17]: 0.10591766131171515

In [18]: max(Fhatim-Fstari)

Out[18]: 0.11233110037923455

We can plot the empirical cdf along with the normal one:

In [19]: x = np.linspace(-10,10,1000)

In [20]: Fhat = np.mean(xi[None,:] <= x[:,None],axis

=-1)

In [21]: Fstar = stardist.cdf(x)

In [22]: figure();

In [23]: plot(x,Fhat,'b-',lw=2,label=r'$\hat{F}(x,\{
x_i\})$');

In [24]: plot(x,Fstar,'r--',lw=2,label=r'$F^*(x)$');

In [25]: ip = np.argmax(Fstar-Fhat)

In [26]: im = np.argmax(Fhat-Fstar)

In [27]: annotate('',xy=(x[ip],Fstar[ip]),xycoords='
data',xytext=(x[ip],Fhat[ip]),textcoords='data',
arrowprops=dict(arrowstyle='<->'));

In [28]: annotate('',xy=(x[im],Fstar[im]),xycoords='
data',xytext=(x[im],Fhat[im]),textcoords='data',
arrowprops=dict(arrowstyle='<->'));

In [29]: xlabel(r'$x$');

In [30]: ylabel('cdf');

In [31]: legend(loc='upper left');
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In [32]: grid(True);

In [33]: savefig('notes06_lilliefors.eps',
bbox_inches='tight')
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Since we estimated the normal parameters rather than specify-
ing them, the null distribution of the statistic will not be the
Kolmogorov distribution. In fact there is no closed-form expres-
sion for the “Lilliefors distribution”, but we can estimate it with
a Monte Carlo, generating a large number of normal samples of
size n, scaling each by its sample mean and sample variance, and
constructing the Kolmogorov statistic with the standard normal
as the reference distribution:

In [34]: np.random.seed(20181030)

In [35]: Nmonte = 10**5

In [36]: x_Ii = stats.norm.rvs(size=(Nmonte,n))

In [37]: x_Ii.sort(axis=-1)

In [38]: xbar_I = np.mean(x_Ii,axis=-1)

In [39]: s_I = np.std(x_Ii,axis=-1,ddof=1)

In [40]: Fstar_Ii = stats.norm.cdf((x_Ii-xbar_I[:,

None])/s_I[:,None])

In [41]: Tp_I = np.max(Fstar_Ii-Fhatip,axis=-1)

In [42]: Tm_I = np.max(Fhatim-Fstar_Ii,axis=-1)

In [43]: print(np.mean(np.maximum(Tp_I,Tm_I)>max(Tp,

Tm)))

0.00342

We numerically estimate a p-value of 0.00342, since 342 of the
100, 000 samples had a higher Kolmogorov statistic. Note that
the Monte Carlo uncertainty on that number is about

√
342 ≈

18.5, which means the p-value is definitely between 0.003 and
0.004. We can get a closer look at what’s going on by zooming
in a bit:

In [44]: xlim(-5,5);

In [45]: savefig('notes06_lilliefors_zoom.eps',
bbox_inches='tight');
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So we see that, although the most egregious feature of the dis-
tribution is the large outliers, they are not directly causing the
unlikely Lilliefors statistic value. Instead, it’s a mismatch in the
middle of the distribution. In fact, this is sort of caused by the
outliers, since they have a big impact on the estimate of the sam-
ple mean and variance used to estimate the parameters of the
normal distribution. Note that these parameters do not produce
the lowest possible Kolmogorov statistic. We can, for example,
get a “better fit” by using the sample median and interquartile
spread to estimate the parameters:

In [46]: altloc = np.median(xi); altloc

Out[46]: -0.49208918147769198

In [47]: altscale = (np.percentile(xi,75) - np.

percentile(xi,25))/(stats.norm.ppf(.75) - stats.

norm.ppf(.25)); altscale

Out[47]: 1.2881030571979752

In [48]: altdist = stats.norm(loc=altloc,scale=

altscale)

In [49]: Falti = altdist.cdf(xi)

In [50]: altTp = max(Falti-Fhatip); altTp

Out[50]: 0.053847080513066636

In [51]: altTm = max(Fhatim-Falti); altTm

Out[51]: 0.038588594271776813

In [52]: Falt = altdist.cdf(x)

In [53]: figure();

In [54]: plot(x,Fhat,'b-',lw=2,label=r'$\hat{F}(x,\{
x_i\})$');

In [55]: plot(x,Falt,'r--',lw=2,label=r'$F^*(x)$');

In [56]: altip = np.argmax(Falt-Fhat)

In [57]: altim = np.argmax(Fhat-Falt)

In [58]: annotate('',xy=(x[altip],Falt[altip]),
xycoords='data',xytext=(x[altip],Fhat[altip]),
textcoords='data',arrowprops=dict(arrowstyle
='<->'));
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In [59]: annotate('',xy=(x[altim],Falt[altim]),
xycoords='data',xytext=(x[altim],Fhat[altim]),
textcoords='data',arrowprops=dict(arrowstyle
='<->'));

In [60]: xlabel(r'$x$');

In [61]: ylabel('cdf');

In [62]: legend(loc='upper left');

In [63]: grid(True)

In [64]: xlim(-5,5)

Out[64]: (-5, 5)

In [65]: savefig('notes06_altlilliefors_zoom.eps',
bbox_inches='tight')

In [66]: print(np.mean(np.maximum(Tp_I,Tm_I)>max(

altTp,altTm)))

0.67988

Of course, the fact that the Lilliefors test uses the sample mean
and sample median allows it to be influenced by large out-
liers which would otherwise not have much impact on the Kol-
mogorov statistic.
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2.2 Interlude: The Cramér-von Mises and
Anderson-Darling Tests

We’ve seen a drawback to Kolmogorov-Smirnov type tests,
which we can consider in two parts:

1. Using the maximum separation between the empirical and
hypothesized cdfs bases the results on what’s happening on
one point rather than overall, and

2. The “worst” mismatch will generally not be in the tails,
since the hypothetical cdf is close to 0 or 1 there, and∣∣∣F ∗(x)− F̂ (x; {xi})

∣∣∣ is not significantly different if F ∗(x) =

0.01 or 10−6.
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We can address the first of these by considering some measure
like the total area between the cdf curves∫ ∞

−∞

∣∣∣F̂ (x; {xi})− F ∗(x)
∣∣∣ dx (2.4)

or a sort of quadratic distance∫ ∞
−∞

[F̂ (x; {xi})− F ∗(x)]2 dx . (2.5)

One problem with these possible statistics is that they’d change
if we made some transformation of the data, like Y = X3, while
the cdfs themselves would not, since P (X3 ≤ x3) = P (X ≤ x).
So the natural thing to do is actually to use the hypothesized
probability density f ∗(x) = F ∗′(x) as a “measure” for the inte-
gral:

TCvM

n
=

∫ ∞
−∞

[F̂ (x; {xi})− F ∗(x)]2 f ∗(x) dx

=

∫ 1

0

[F̂ (F ∗−1(u); {xi})− u]2 du

(2.6)

where F ∗−1(u) is the inverse of the hypothesized cdf. This is
known as the Cramér-von Mises statistic.

You might think this is a lot harder to evaluate than the
Kolmogorov statistic, since you have to integrate over all x (or
equivalently all u), but you can break up the integral into n+ 1
pieces divided by the actual xi values. If x(i) denotes the ith
order statistic of the data (the ith value in the list when the
data are sorted), then,

• For x < x(1), F̂ (x; {xi}) = 0 and the integrand is [F ∗(x)]2,
which makes the integral∫ F ∗(x(0))

0

u2 du =
[F ∗(x(0))]3

3
(2.7)

• For x(i) < x < x(i+1), i = 1, . . . n − 1, F̂ (x; {xi}) = i
n

and
the integrand is [F ∗(x)− i/n]2, which makes the integral∫ F ∗(x(i+1))

F ∗(x(i))

(u−i/n)2 du =
[F ∗(x(i+1))− i/n]3

3
− [F ∗(x(i))− i/n]3

3
(2.8)

• for x(n) < x, F̂ (x; {xi}) = 1 and the integrand is [F ∗(x) −
1]2, which makes the integral∫ 1

F ∗(x(n))

(u− 1)2 du =
[F ∗(x(n))− 1]3

3
(2.9)

Combining these terms with a little bit of algebra gives the ex-
pression

TCvM =
1

12n
+

n∑
i=1

(
2i− 1

2n
− F ∗(x(i))

)2

(2.10)

This is still not very much impacted by what’s happening on the
tails, though. To probe that, we modify the statistic further,
using the fact that the squared standard error of F̂ (x; {Xi}) as
an estimator of F (x) is

Var(F̂ (x; {Xi})) =
1

n
F (x)[1− F (x)] (2.11)

We thus define the Anderson-Darling statistic as

A2 = n

∫ ∞
−∞

[F̂ (x; {xi})− F ∗(x)]2

F ∗(x)[1− F ∗(x)]
f ∗(x) dx (2.12)

Note that this has a chi-squared-ish construction as a sum of
(X−µ)2
σ2 . (Although not exactly, since the different x values don’t

represent independent points.) The piecewise integration is a
little more complicated, but the result is

A2 = −n−
n∑
i=1

2i− 1

n

(
ln[F ∗(x(i))] + ln[1− F ∗(x(n+1−i))]

)
(2.13)
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The exact critical values for A2 can be evaluated with a Monte
Carlo, but as an approximation1, in the case where the target
distribution is normal with parameters estimated using the sam-
ple mean and variance, if we write

(A∗)2 = A2

(
1 +

0.75

n
+

2.25

n2

)
(2.14)

some key critical values are

P ([A∗]2 ≥ 0.631) ≈ 0.10 (2.15a)

P ([A∗]2 ≥ 0.752) ≈ 0.05 (2.15b)

P ([A∗]2 ≥ 0.873) ≈ 0.025 (2.15c)

P ([A∗]2 ≥ 1.035) ≈ 0.01 (2.15d)

P ([A∗]2 ≥ 1.159) ≈ 0.005 (2.15e)

Thursday 1 November 2018
– Read Section 6.3 of Conover

2.3 Consistency Tests for The Exponential
Distribution

Another family of distributions for which it’s particularly inter-
esting to perform a consistency test with unknown parameters
is the exponential distribution. That’s because it arises natu-
rally in the description of a Poisson process: if we are noting the
arrival times of independent events with an average rate of 1/τ ,
the number of events in some time interval of duration T will be
Poisson-distributed with mean T/τ , but the waiting time from
one event to the next (or from an arbitrary start time to the
first event) will be exponentially distributed, with a cumulative

1citation to be added

distribution function

F (x) =

{
0 −∞ < x < 0

1− e−x/τ 0 ≤ x <∞ (2.16)

and an expectation value E(X) = τ . If we have a set of wait-
ing times {xi} and wish to evaluate the hypothesis that they
come from an exponential distribution with unspecified rate,
it’s reasonable to use the estimated rate τ̂ = x = 1

n

∑n
i=1 xi and

compare the empirical distribution F̂ (x) to the hypothesized
distribution

F ∗(x) =

{
0 −∞ < x < 0

1− e−x/x 0 ≤ x <∞ (2.17)

We define the test statistics as usual as

T+ = sup
x

(F ∗(x)− F̂ (x)) = max
i

(
1− e−x(i)/x − i− 1

n

)
(2.18a)

T− = sup
x

(F̂ (x)− F ∗(x)) = max
i

(
i

n
− 1 + e−x

(i)/x

)
(2.18b)

T = sup
x

∣∣∣F̂ (x)− F ∗(x)
∣∣∣ = max(T+, T−) (2.18c)

3 Two-Sample Consistency Tests

Finally, we consider the case where we have two samples {xi|i =
1, . . . , n} and {yj|j = 1, . . . ,m}, and wish to ask whether they
come from the same distribution. We’ve approached this ques-
tion as a comparison of location parameters with the Wilcoxon-
Mann-Whitney rank sum test and as a comparison of scale pa-
rameters with the Conover squared ranks test. But if we wish
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to make a general comparison, one option is to compare the
empirical distributions

F̂x(x; {xi}) =
1

n

n∑
i=1

I[xi ≤ x] =


0 x < x(1)

i
n

x(i) ≤ x < x(i+1)

1 x(n) ≤ x

(3.1a)

F̂y(x; {yj}) =
1

m

m∑
j=1

I[yj ≤ x] =


0 x < y(1)

j
m

y(j) ≤ x < y(j+1)

1 y(m) ≤ x

(3.1b)

where {x(i)} and {y(j)} are the order statistics of the two sam-
ples.

3.1 Two-Sample Kolmogorov-Smirnov

To perform a Kolmogorov-Smirnov test with the two empirical
cdfs, we define the statistics

T+ = sup
(
F̂x(x)− F̂y(x)

)
(3.2a)

T− = sup
(
F̂y(x)− F̂x(x)

)
(3.2b)

T = sup
∣∣∣F̂x(x)− F̂y(x)

∣∣∣ = max(T+, T−) (3.2c)

To see how this plays out, we consider the very simple case where
{xi} = {0.1, 2.718, 3.14159} and {yj} = {4, 2}, and construct
the empirical cdfs. We see that T+ = 1− 1

2
= 1

2
, T− = 1

2
− 1

3
= 1

6

and thus T = 1
2
:

0.
1 2

2.
71
8

3.
14
15
9 4

x

0

1
3

1
2

2
3

1

em
p
ri
ca
l
cd
f

T+ = 1
2

T− = 1
6

F̂x(x)

F̂y(x)

Note that nothing about this construction used the numerical
values of the {xi} and {yj}, just their ordering, so we could also
use the ranks of the data rather than the data themselves:

1 2 3 4 5

k

0

1
3

1
2

2
3

1

em
p
ri
ca
l
cd
f

T+ = 1
2

T− = 1
6

F̂x(X
(k))

F̂y(X
(k))
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This allows us to construct the null distribution by enumerating
the

(
n+m
n

)
possible divisions of the ranks 1 to n+m into x-ranks

and y-ranks, and computing the Kolmogorov-Smirnov statistics
for each of them. In this case there are

(
5
3

)
= 10 possibilities.

Conover goes through them and shows that 1 has T = 1
3
, 3 have

T = 1
2
, 4 have T = 2

3
, and 2 have T = 1. So the p-value for

the data we consider is 4+2
10

= 0.60. (We can also look at Table
A20 in Conover and see that the threshold to reject a two-tailed
hypothesis at the α = 0.20 level is T > 2

3
.)

3.2 Two-Sample Cramér-von Mises and
Anderson-Darling

Recall that the one-sample Cramér-von Mises test compared
the empirical distribution F̂ (x) to the hypothesized distribution
F ∗(x) using a statistic constructed from the integral∫ ∞

−∞
[F̂ (x)− F ∗(x)]2 f ∗(x) dx (3.3)

We’d like to use the same method in the two-sample case to
compare F̂x(x) and F̂y(x). There are a couple of challenges
related to the “measure” f ∗(x) dx = dF ∗(x). First, if we’re
treating the two samples the same, which distribution should in
place of the hypothesized distribution. One obvious choice is to
combine the data sets {xi|i = 1, . . . , n} and {yj|i = j, . . . ,m}
into {Xk|k = 1, . . . , n + m}, and use this combined sample to
produce an empirical distribution function

F̂x,y(x; {Xk}) =
1

n+m

(
n∑
i=1

I[xi ≤ x] +
m∑
j=1

I[yj ≤ x]

)

=


0 x < X(1)

k
n+m

X(k) ≤ x < X(k+1)

1 X(n+m) ≤ x

(3.4)

and then use the definition∫ ∞
−∞

[F̂x(x)− F̂y(x)]2 f̂x,y(x) dx (3.5)

This brings us to another problem, though. The empirical cdf
F̂x,y(x) has discrete jumps, so we can’t just take its derivative

to calculate a density f̂x,y(x).2 But if we go back to (3.3) and
consider it to be an expectation value constructed using the
hypothesized distribution

EF ∗([F̂ (X; {xi})− F ∗(X)]2) (3.6)

we can see a way forward. The empirical distribution Fx,y is
basically a discrete distribution with a pmf which is non-zero at
the values present in the combined sample: px,y(X

(k)) = 1
n+m

(assuming there are no repeated values in the combined sam-
ple). So we can replace the integral

∫∞
−∞(· · · )f̂x,y(x)dx with the

sum
∑

x(· · · )px,y(x) and write a statistic based on a discrete
expectation value:

EF̂x,y
([F̂x(x)− F̂y(x)]2) =

n+m∑
k=1

[F̂x(X
(k))− F̂y(X(k))]2

n+m
(3.7)

If we construct this sum explicitly for the data set considered
above, we get

1

5

[(
1

3
− 0

)2

+

(
1

3
− 1

2

)2

+

(
2

3
− 1

2

)2

+

(
1− 1

2

)2

+ (1− 1)2
]

=
1

5

[
1

9
+

1

36

1

36
+

1

4

]
=

4 + 1 + 1 + 9

180
=

15

180
=

1

12
(3.8)

2Actually, we could carry out a construction based on the Dirac delta
function, but that would involve introducing additional mathematical ap-
paratus and possibly induce indigestion in mathematical purists.
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More than the numerical value of the sum, it’s of interest that
the last value is zero. This will always be the case, since it’s
guaranteed that Fx(X

(n+m)) = 1 = Fx(X
(n+m)) so we can leave

that term out of the sum,3 and write the two-sample Cramér-von
Mises statistic (putting an extra nm

n+m
out front for convention)

as

T2 =
nm

(n+m)2

n+m−1∑
k=1

[F̂x(X
(k))− F̂y(X(k))]2 (3.9)

For the data set in question,

T2 =
3× 2

5

1

12
=

1

10
(3.10)

Having laid the groundwork with the Cramér-von Mises statis-
tic, it’s straightforward to convert this to an Anderson-Darling
statistic, by including F̂xy(x)[1 − F̂xy(x)] in the denominator.
Conceptually, this normalizes the squared deviation by the ex-
pected variance; practically, it increases the importance of out-
liers. The statistic is then

A2 =
nm

(n+m)2

n+m−1∑
k=1

[F̂x(X
(k))− F̂y(X(k))]2

F̂xy(X(k))[1− F̂xy(X(k))]

= nm
n+m−1∑
k=1

[F̂x(X
(k))− F̂y(X(k))]2

k(n+m− k)

(3.11)

Note that dropping the k = n+m term from the sum has avoided
giving us a 0/0 contribution.

3This clears up an apparent asymmetry where the statistic is defined by
contributions from points where one of the empirical cdfs is discontinuous,
and always uses the value to the right of the jump (since the cdf is by
definition right-continuous). The fact that the contribution from the value
after the last jump is zero makes up for the lack of a contribution from the
value before the first jump.

Obviously, the two-sample Cramér-von Mises and Anderson-
Darling statistics can be constructed from the ranks as well,
so the associated p-values can be calculated as with the
Kolmogorov-Smirnov test. Note that they are explicitly one-
tailed, though, since the deviation has been squared.
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