
STAT 345-01: Nonparametric Statistics

Problem Set 1

Assigned 2018 August 28
Due 2018 September 4

Show your work on all problems! Be sure to give credit to any collaborators, or outside
sources used in solving the problems. Note that if using an outside source to do a calculation, you
should use it as a reference for the method, and actually carry out the calculation yourself; it’s not
sufficient to quote the results of a calculation contained in an outside source.

Please hand in parts one and two separately.

1 Part One

1.1 Conover Problems on Probability

Exercise 1.4.2, Exercise 1.5.10, Review Problem 1.6.2, Review Problem 1.6.3, Review
Problem 1.6.14

1.2 Conover Problems on Statistical Inference

Problem 2.1.1, Exercise 2.2.2, Exercise 2.2.8

2 Part Two

Please turn in some sort of transcript of your python session, along with answers to the questions
posed. If you want to submit electronically, please send either a pdf or a plain ASCII file. No Word
documents!

2.1 Practice with Python

The main point of this problem is to gain some experience with a versatile datatype, the NumPy
array. This exercise is most easily done within an interactive interpreter like IPython. As a matter
of practice, I recommend always starting the session with

from __future__ import division

This enforces the Python 3 behavior of doing floating point division unless integer division is ex-
plicitly invoked with the // operator. (Not necessary if you’re already using Python 3, of course.)
Then

import numpy as np

(a) Define an array

A_i = np.arange(5)
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You can check the dimensions of the array with A_i.shape and display its contents with
print(A_i). Also, access the initial element with A_i[0] (python indexes from zero). If you
want the last element you can use A_i[-1]. What happens if you ask for A_i[5]?

(b) Define another array with

B_i = np.ones(5)

check its shape, and display its contents. One of the nice things about NumPy is that arith-
metic operations are vectorized. (This is faster than looping over the elements in Python
because the operation is coded up in C.) Define

C_i = A_i + B_i

and show its shape and contents.

(c) You can also add indices to arrays. There are a lot of variants of the syntax, but here’s my
favorite. Define

A_xi = A_i[None,:]

E_j = 10.*np.arange(3)

E_jx = E_j[:,None]

and show the shape and contents of A_xi, E_j, and E_jx.

(d) Now see what happens when you define

F_ji = A_xi + E_jx

and show its shape and contents. This is known as array broadcasting. What is F_ji[1,3]?

(e) You can also remove indices by taking the sum (or product, or average, or various other
operations) along one of the “axes” of the array. For example, try

G_i = F_ji.sum(axis=0)

and show its shape and contents.

2.2 Empirical Confidence Interval Checking

(a) In this problem, we’ll be using the Central Limit Theorem to construct a confidence interval
using the normal distribution, with endpoints x ± z1−α/2s/

√
n. We will carry out N = 104

replications of an experiment which involves drawing a sample of size n = 50 to construct a
confidence interval of confidence level 1 − α = 90% on the mean µ of the sampling distribu-
tion. The fraction of those N confidence intervals containing the true mean µ (which we will
arbitrarily set to 5 for this experiment) should be about 90% if the procedure is correct. We
can set things up with a few standard commands

from __future__ import division

import numpy as np

from scipy import stats

N = 10**4

n = 50

mu = 5.

alpha = 1. - 0.90

zcrit = stats.norm.isf(0.5*alpha)
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If each interval has a probability of 90% of containing the true value, what is the total number
we expect out of 10,000? What’s the standard deviation associated with that expectation?

(b) Let’s check this with the normal distribution, which we can initialize with

mydist = stats.norm(loc=mu)

We can draw a sample with

x_ji = mydist.rvs(size=(N,n))

and calculate the summary statistics with

xbar_j = x_ji.mean(axis=-1)

s_j = x_ji.std(axis=-1,ddof=1)

The ddof stands for “degenerate degrees of freedom”, which basically just means to use n− 1
rather than n in the normalization of the sample variance. We can define the ends of the
confidence interval with

CIlo_j = xbar_j - zcrit*s_j/np.sqrt(n)

CIhi_j = xbar_j + zcrit*s_j/np.sqrt(n)

To check how many intervals contain the true value of µ = 5, we can use the construction that
CIlo_j<mu will return an array of True and False values based on whether the inequality is
true for each element of CIlo_j.

inCI_j = np.logical_and(CIlo_j<mu, mu<CIhi_j)

We can get the total number of such intervals with

print(np.sum(inCI_j))

and the sum with

print(np.mean(inCI_j))

What fraction of the N confidence intervals contain µ? Each of the N confidence intervals
has a different width, but display CIhi_j-CIlo_j, and you’ll see the first and last few. What
is the median with among the N widths?

(c) Repeat the process for a Laplace distribution.

(d) Repeat the process for a Student-t distribution with ν = 3.
(Hint: use mydist = stats.t(loc=mu,df=3)).

(e) Repeat the process for a Cauchy Distribution. What goes wrong in this case?
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