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1 Linear Regression

We make a bit of a shift of topic now, from statistical tests and
confidence intervals to the process of fitting data to a model.

∗Copyright 2019, John T. Whelan, and all that

The techniques will seem rather different, but it’s enlightening
to make contact with what we’ve done before.

Recall that in our treatment of paired data, we considered
data sets {xi|i = 1, . . . , n} and {yi|i = 1, . . . , n} which were as-
sumed to drawn from joint distributions where Xi and the cor-
responding Yi were correlated (for instance a bivariate normal
distribution), and we drew inferences on the statistical proper-
ties of

Di = Xi − Yi (1.1)

We can write this relationship as

Yi = Xi +Di (1.2)

Note, however, that the distributions for Xi and Di are in gen-
eral correlated,

Cov(Xi, Di) = Var(Xi)− Cov(Xi, Yi) (1.3)

If the underlying distribution was a bivariate Gaussian, we’d
expect the data to be spread out roughly in an ellipse in the x-y
plane:
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Multivariate Gaussian

Note that this has a lot more structure than is reflected in just
µD = µ1 − µ2.

In the case of linear regression, we want to consider data which
are once again paired into xi, yi, but now the model we assume is
that yi is a linear function of xi plus some error whose properties
don’t depend on xi. In terms of random variables, this means

Yi = β0 + β1Xi + εi (1.4)

where β0 and β1 are constants, and εi follows a distribution
which is independent of Xi; for concreteness we will assume
εi ∼ N(0, σ2) where the error amplitude σ is some non-negative
constant. It is also conventional to assume that the values {xi}
are known constants, and thus write

Yi = β0 + β1xi + εi (1.5)

although the data analysis is the same in any event. Data as-
sociated with a linear regression model are typically spread out

about a diagonal line, with the typical offset values being the
same all along the line:
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Linear Regression

1.1 Estimation of Parameters

The first task to be performed in a linear regression problem is to
estimate the parameters β0 and β1, as well as the error amplitude
σ. The usual method for the slope β1 and intercept β0 is known
as least squares, which finds the values which minimize

q(β0, β1) =
n∑
i=1

(yi − β0 − β1xi)2 (1.6)

This seems a bit ad hoc at first, and in fact it appears uncon-
nected to our previous method because the techniques of regres-
sion and least squares estimation predate the development of
classical statistics. But we can actually motivate the process by

2



a standard technique: maximum likelihood estimation. For a
given xi, Yi ∼ N(β0 + β1xi, σ

2), which means the pdf is

fi(yi; β0, β1, σ) =
1

σ
√

2π
exp

(
−(yi − β0 − β1xi)2

2σ2

)
(1.7)

and the log-likelihood is

ln f(y1, . . . , yn; β0, β1, σ) = ln
n∏
i=1

fi(yi) =
n∑
i=1

ln fi(yi)

= −n
2

ln(2π)− n lnσ − 1

2σ2

n∑
i=1

(yi − β0 − β1xi)2 (1.8)

For any value of σ, then, the β0 and β1 values which maximize
the likelihood will be those which minimize q(β0, β1). The partial
derivatives are

∂q

∂β0
= −2

n∑
i=1

(yi − β0 − β1xi) (1.9a)

∂q

∂β1
= −2

n∑
i=1

xi(yi − β0 − β1xi) (1.9b)

and setting both to zero gives the system of equations for the
maximum likelihood estimates β̂0 and β̂1:

nβ̂0 +

(
n∑
i=1

xi

)
β̂1 =

n∑
i=1

yi (1.10a)(
n∑
i=1

xi

)
β̂0 +

(
n∑
i=1

x2i

)
β̂1 =

n∑
i=1

xiyi (1.10b)

which can also be written

β̂0 + xβ̂1 = y (1.11a)

xβ̂0 + x2β̂1 = xy (1.11b)

and has solutions

β̂1 =
xy − x y
x2 − (x)2

=

∑n
i=1(xi − x)(yi − y)∑n

i=1(xi − x)2
(1.12a)

β̂0 = y − β̂1x (1.12b)

Note that the second expression for β̂1 is less prone to round-
off errors, but the first can be easily computed using the first
and second moments of the data (n,

∑n
i=1 xi,

∑n
i=1 yi,

∑n
i=1 x

2
i ,∑n

i=1 y
2
i , and

∑n
i=1 xiyi) as long as extra precision is kept in

intermediate steps. However, a more robust (but equivalent)
set of summary variables is n, x = 1

n

∑n
i=1 xi, y = 1

n

∑n
i=1 yi,

Sxx =
∑n

i=1(xi − x)2, Sxy =
∑n

i=1(xi − x)(yi − y), and ,
Syy =

∑n
i=1(yi − y)2. In particular, we have

β̂1 =
Sxy
Sxx

(1.13a)

β̂0 = y − Sxy
Sxx

x (1.13b)

which is also fairly easy to remember.
For any x, we can generate a point estimate of the corre-

sponding y, i.e., β̂0 + β̂1x. In particular, for xi the correspond-
ing “predicted” value is ŷi = β̂0 + β̂1xi, and we call yi − ŷi the
residual.

We can return now to the question of estimating σ. One
obvious point estimate would be the maximum likelihood value;
setting the partial derivative of (1.8)

∂ ln f

∂σ
= −n

σ
+

1

σ3

n∑
i=1

(yi − β0 − β1xi)2 (1.14)

to zero would give a maximum likelihood estimate of σ2 equal
to

1

n

n∑
i=1

(yi − β̂0 − β̂1xi)2 =
1

n

n∑
i=1

(yi − ŷi)2 (1.15)
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however, as with the case for the mle of σ2 from a normal random
sample, this turns out to be a biased estimator because we have
to estimate the two parameters β0 and β1 from the data. The
unbiased estimator is

σ̂2 = s2 =
1

n− 2

n∑
i=1

(yi − ŷi)2 =
SSE

n− 2
(1.16)

where we have defined the sum square error (SSE) associated
with the estimates {ŷi}. A little bit of algebraic manipulation
shows that we can also calculate this as either

SSE =
n∑
i=1

y2i − β̂0
n∑
i=1

yi − β̂1
n∑
i=1

xiyi (1.17)

or

SSE = Syy −
S2
xy

Sxx
(1.18)

depending on which set of summary variables we want to work
with.

Sometimes it’s useful to quantify how much of the variability
of the {yi} is explained by the best-fitting linear model. We note
that SSE = q(β̂0, β̂1) is the lowest possible value of q(β0, β1).
If we instead restricted ourselves to models with β1 = 0, i.e.,
assumed that {yi} was a sample from a normal distribution
N(β0, σ

2), we would find that the best fitting value for β0 was y
and therefore the lowest value of q(β0, 0) is

q(y, 0) =
1

n

n∑
i=1

(yi − y)2 = SST =
n∑
i=1

y2i −
1

n

(
n∑
i=1

yi

)2

(1.19)

This is called the SST1 or total sum of squares, and it is a mea-
sure of the deviation of the points from the best-fitting horizon-
tal line (whereas the SSE is the deviation from the best-fitting

1Note that SST = Syy.

diagonal line).2 Since q(β0, β1) as defined is always non-negative,
and the SSE is the lowest possible value of the function, we have

0 ≤ SSE ≤ SST (1.20)

The ratio SSE/SST can thus be used to measure how important
it was to use a diagonal rather than a horizontal line for the fit.
If it’s close to 1, then a horizontal line fits almost as well; if it’s
close to 0, then the diagonal line gives a much better fit. We
define the coefficient of determination

r2 = 1− SSE

SST
(1.21)

as a measure (0 ≤ r2 ≤ 1) of how much better the diagonal line
fits than the horizontal line.

Practice Problems

12.9, 12.11, 12.17, 12.19

2The analogy to the corresponding quantities from ANOVA is that the
SSE is the deviation from the best estimate using the model (either that
each treatment has its own mean in the case of ANOVA, or that the mean
is linearly related to x in the case of regression, whereas the SST is the
deviation from the overall average of all of the data, ignoring the model
(either treatments or the value of x).
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Tuesday 28 March 2019

1.1.1 Estimators in Terms of Summary Data

All of the estimators so far:

β̂0 = y − Sxy
Sxx

x (1.22a)

β̂1 =
Sxy
Sxx

(1.22b)

s2 =
1

n− 2

(
Syy −

S2
xy

Sxx

)
(1.22c)

1.2 Inference for the Slope Parameter

So far, we’ve considered point estimates for the parameters β0,
β1 and σ2, which were

β̂1 =

∑n
i=1(xi − x)(yi − y)∑n

i=1(xi − x)2
(1.23)

β̂0 = y − β̂1x (1.24)

and

s2 =
1

n− 2

n∑
i=1

(yi − β̂0 − β̂1xi)2 (1.25)

respectively. Now we turn to interval estimation and hypothesis
testing. We’ll focus on the slope parameter β1, and consider the
statistical properties of the estimator

β̂1 =

∑n
i=1(xi − x)(Yi − Y )∑n

i=1(xi − x)2
(1.26)

Note that since we’re treating the {xi} as given, the only ran-
domness associated with the estimator comes from the {Yi}.

Also, note that

n∑
i=1

(xi − x)Y = Y

(
n∑
i=1

xi − nx
)

= 0 (1.27)

so

β̂1 =

∑n
i=1(xi − x)Yi

Sxx
(1.28)

where Sxx =
∑n

i=1(xi − x)2. (Note that despite being writ-
ten with a capital letter, Sxx is not a statistic or other random
variable.) Since Yi ∼ N(β0 + β1xi, σ

2), β̂1, which is a linear
combination of the independent normal random variables {Yi},
is normal with

E(β̂1) =

∑n
i=1(xi − x)(β0 + β1xi)

Sxx
= β1 (1.29)

and

V (β̂1) =

∑n
i=1(xi − x)2σ2

(Sxx)2
=

σ2

Sxx
= σ2

β̂1
(1.30)

To make a standardized statistic, we have to estimate σβ̂1 =

σ/
√
Sxx using the estimate s in place of σ. Specifically,

S2
β̂1

=
S2

Sxx
=

1

(n− 2)Sxx

n∑
i=1

(Yi − β̂0 − β̂1xi)2 (1.31)

Since the variance estimate required the estimation of two pa-
rameters, the standardized statistic

T =
β̂1 − β1
Sβ̂1

=
β̂1 − β1√
S2/Sxx

(1.32)

obeys a Student t distribution with n− 2 degrees of freedom.
We can apply this as usual; as a pivot variable, it gives us a

confidence interval at CL (1− α)× 100% with endpoints

β̂1 ± tα/2,n−2s/
√
Sxx (1.33)
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Similarly, if we want to test a hypothesis H0 which says β1 =
β
(0)
1 for some proposed value β

(0)
1 , the test statistic is

t =
β̂1 − β(0)

1

s/
√
Sxx

(1.34)

which we compare to tα,n−2, −tα,n−2 or ±tα/2,n−2, depending
on whether it’s appropriate to carry out an upper-, lower-, or
two-tailed test.

Practice Problems

12.31, 12.79

Tuesday 2 April 2019

Review for Prelim Exam Two (from section 9.1 to 12.1, inclu-
sive). Please bring questions, and ideally ask them by email
before class.

Thursday 4 April 2019

Prelim Exam Two (from section 9.1 to 12.1, inclusive). Closed
book, closed notes, but you may bring one handwritten
8.5”×11” (front and back) formula sheet, and also use a sci-
entific calculator.

Tuesday 9 April 2019

1.3 Inferences about Predicted Values

1.3.1 Confidence Interval for Average Model Value

Reminder of the linear regression model: Treating the {xi} as
given, the observed data are independent rvs, with

Yi ∼ N(β0 + β1xi, σ
2) (1.35)

where β0. β1 and σ are treated as unknown variables. The
maximum likelihood/least squares estimators of β1 and β0 are

β̂1 =
Sxy
Sxx

=
1

Sxx

n∑
i=1

(xi − x)Yi (1.36)

and

β̂0 = Y − xβ̂1 (1.37)

We’ve seen (between class and homework) that β̂0 and β̂1 are
each normally distributed unbiased estimators of the corre-
sponding parameter. But rather than just placing confidence
intervals on the slope and intercept of the linear function giving
the expectation value of the data as a function of x, we’re often
interested in the uncertainty of where that line is at each point.
I.e., we’d like to estimate the quantity β0 + β1x for a given x.
Devore refers to the x value of interest as x∗, and the quantity
of interest as

µY ·x∗ = β0 + β1x
∗ (1.38)

The obvious estimator is

β̂0 + β̂1x
∗ = Y + β̂1(x

∗ − x) =
n∑
i=1

(
1

n
+

(x∗ − x)(xi − x)

Sxx

)
Yi

(1.39)
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which Devore calls Ŷ . Since it’s a linear combination of the {Yi},
it’s a normally-distributed random variable. As a statistic, it has
expectation value

E(Ŷ ) = E(β̂0) + E(β̂1)x
∗ = β0 + β1x

∗ = µY ·x∗ (1.40)

I.e., it’s an unbiased estimator. Since the {Yi} are independent
random variables, the variance is

V (Ŷ ) =
n∑
i=1

(
1

n
+

(x∗ − x)(xi − x)2

Sxx

)2

V (Yi) = σ2

(
1

n
+

(x∗ − x)2

Sxx

)
(1.41)

(We’ve omitted several steps of non-trivial algebra at the last
equals sign!)

As usual, we can’t actually calculate V (Ŷ ) from the data; we
have to estimate it by replacing σ2 with

s2 =
SSE

n− 2
=

1

n− 2

(
Syy −

S2
xy

Sxx

)
(1.42)

and thus writing

sŶ = s

√
1

n
+

(x∗ − x)2

Sxx
(1.43)

We then know that

T =
Ŷ − µY ·x∗

SŶ
(1.44)

is a Student-t distributed random variable with n − 2 degrees
of freedom. So for example if we want a confidence interval at
confidence level α on β0 + β1x

∗ it will be

β̂0 + β̂1x
∗ ± tα/2,n−2 s

√
1

n
+

(x∗ − x)2

Sxx
(1.45)

Note that the width of this confidence interval depends on x∗. It
is a minimum for x∗ = x, and grows as x∗ gets farther away from
x. This reflects the fact that, the farther we get from the middle
of the data used to estimate the linear relationship between x
and y, the less accurately we can estimate the best-fit line.
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Confidence Interval for Linear fit

Note that there are other dangers in trying to extrapolate an
inferred linear relationship beyond the range of the observed
data. If the linear model we’ve assumed is not valid over the
wider range of x values, we can make a large error which is not
reflected in our uncertainty on β0 and β1. (Our model doesn’t
include a β2, β3, etc, so we’re assuming they’re zero, but we
don’t quantify our uncertainty on that.)

1.3.2 Prediction Intervals for Future Values

Now we wish to consider a slightly different question. Suppose,
after making observations of n random variables {Yi} where Yi ∼
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N(β0+β1xi, σ
2) and doing linear regression estimating using the

values {yi}, we take a new value Y at x∗. (You could think of
this as Yn+1 if you like, in which case x∗ would be xn+1.) The
best estimator we can use for Y , constructed from previous {Y i},
is Ŷ , defined above. Since

E(Y ) = E(Ŷ ) = µY ·x∗ (1.46)

the statistic Y − Ŷ has zero expectation value. Since Ŷ is con-
structed only from the previous {Yi}, Y and Ŷ are independent
random variables, and thus

V (Y−Ŷ ) = V (Y )+(−1)2Ŷ ) = σ2+σ2
Ŷ

= σ2

(
1 +

1

n
+

(x∗ − x)2

Sxx

)
(1.47)

Thus we see the prediction interval is wider than the confidence
interval for the random variable, since it includes the inherent
uncertainty associated with each measurement as well as the
uncertainty in determining the best-fit line itself:
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Practice Problems

12.45, 12.53

Thursday 11 April 2019

1.4 Residuals

(See Devore Section 13.1)
Recall that in our simple linear regression model, we are as-

suming that Y1, Y2, . . . , Yn are independent random variables
with

Yi ∼ N(β0 + β1xi, σ
2) (1.48)

where β0, β1 and σ are unknown. The best-fit estimates β̂0 and
β̂1 from the {xi} and the observed {yi}. The point estimate of
the expected y value at any x is thus β̂0 + β̂1x. In particular,
the best-fit model value at xi is

ŷi = β̂0 + β̂1xi (1.49)

Of course, this is not equal to the actual yi, so it is useful to plot
ei = yi − ŷi. According to our statistical model,

E(Ŷi) = E(β̂0) + E(β̂1)xi = β0 + β1xi = E(Yi) (1.50)

so E(Yi − Ŷi) = 0. We also know V (Yi) = σ2 and, from last
time.

V (Ŷi) = σ2

(
1

n
+

(x∗ − x)2

Sxx

)
(1.51)

However, there is one complication in working out V (Ei) =
V (Yi − Ŷi), which is that, since Ŷi is constructed using the es-
timators β̂0 and β̂1, which are in turn constructed from all of
the random variables {Y1, Y2, . . . , Yn}, the rvs Yi and Ŷi are not
independent. (Compare this to the situation with prediction in-
tervals, where the value being considered was a new Y (or Y n+1,
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not included in the original set.) The variance of the residual is
thus, when you work out the form of the covariance between

V (Ei) = V (Yi − Ŷi) = V (Yi) + V (Ŷi)− 2 Cov(Yi, Ŷi)

= σ2

(
1− 1

n
− (xi − x)2

Sxx

)
(1.52)

Note that this is smaller than σ2, and gets smaller when xi
is farther from the mean of the xs. This is because the data
themselves are pulling the best fit line towards them, and so even
if there are big fluctuations, those fluctuations will influence the
best-fit model.

One can plot the standardized residuals

e∗i =
yi − ŷi

s
√

1− 1
n
− (xi−x)2

Sxx

(1.53)

and see if they are indeed Student-t distributed with n − 2 de-
grees of freedom.

2 Correlation

(See Devore Section 12.5)
Finally, we consider a situation where the picture, at least

in terms of classical statistics, is different from the regression
formalism, but the formulas are related. We’ve been assuming
the {xi} were just given numbers and the {Yi} were random
variables with realizations {yi}. We could also imagine that the
{xi} themselves were the realizations of random variables {Xi}.3

3This is largely a “distinction without a difference” because the standard
regression treatment works if you consider all of the distributions for Yi to
be conditional distributions for a given realization of {xi}, i.e., fY (yi) is
actually fY |X(yi|xi).

The rvs are not all independent, but we assume that {Xi, Yi} is
a sample drawn from a bivariate distribution, which means that
(if the distribution is continuous) the joint pdf is

f(x1, . . . , xn, y1, . . . , yn) = f(x1, y1) f(x2, y2) · · · f(xn, yn) (2.1)

We will now see that a quantity defined in the context of re-
gression actually has a familiar interpretation when considered
in the bivariate context.

Recall the coëfficient of determination r2, defined as

r2 = 1− SSE

SST
= 1− 1

Syy

(
Syy −

S2
xy

Sxx

)
=
SxxSyy − SxxSyy + S2

xy

SxxSyy

=
S2
xy

SxxSyy
(2.2)

so that 0 ≤ r2 ≤ 1. Now, Sxx and Syy are both positive, but Sxy
need not be. So we can define

r =
Sxy√
SxxSyy

(2.3)

This is called the sample correlation coëfficient, and obviously
the square of r is the coëfficient of determination, which we’ve
already called r2. If we recall the definition of the sample vari-
ances

s2x =
1

n− 1

n∑
i=1

(xi − x)2 =
Sxx
n− 1

(2.4a)

s2y =
1

n− 1

n∑
i=1

(yi − y)2 =
Syy
n− 1

(2.4b)

we see that

rsxsy =
1

n− 1

n∑
i=1

(xi − x)(yi − y) =
Sxy
n− 1

(2.5)
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This bears a striking similarity to the formulas for the variance,
covariance and correlation of a pair of random variables:

σ2
x = V (X) = E([X − µX ]2) (2.6a)

σ2
y = V (Y ) = E([Y − µY ]2) (2.6b)

ρσxσy = Cov(X,Y ) = E([X − µX ][Y − µY ]) (2.6c)

So it should not be too surprising that if we have a sample
{xi, yi} drawn from a bivariate distribution f(x, y) or p(x, y),
the sample correlation coëfficient r will be an estimator for the
population correlation coëfficient ρ. In terms of a random sam-
ple, we can refer to the statistic

R =

∑n
k=1(Xk −X)(Yk − Y )√∑n

i=1(Xi −X)2
√∑n

j=1(Yj − Y )2
(2.7)

where we’ve given the sum indices different labels to stress that
there are three separate sums in the definition (not counting
those used to define X and Y ).

The sample correlation coëfficient can be used as a statistic to
perform inferences about the correlation present in the popula-
tion. For simplicity, we’ll consider only the case of a hypothesis
test where the null hypothesis is ρ = 0. In the case where
the underlying distributions are both normal, symmetry tells us
that E(R) = 0. It turns out (you’ll sort of show this on the
homework) that

T =
R
√
n− 2√

1−R2
(2.8)

obeys a Student-t distribution with n− 2 degrees of freedom.

Practice Problems

12.59, 12.83
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