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ABSTRACT
Hartle’s generalized quantum mechanics formalism is used to examine a simple
spacetime coarse graining, i.e., a set of alternatives defined with respect to regions
extended in time as well as space, in the quantum mechanics of a free relativistic
particle. For suitable initial conditions, tractable formulas are found for branch
wave functions. Some initial conditions are found to give decoherence and allow
the consistent assignment of probabilities.

1. Introduction

Most formulations of quantum mechanics make predictions for alternatives de-
fined “at a moment of time”, or more generally on a spacelike surface. However,
in a quantum theory of gravity, in which the metric itself is behaving quantum-
mechanically, the notion of “spacelike” should be ill-defined. It is constructive, then,
to consider a theory which predicts spacetime alternatives, defined with respect to
regions extended in time as well as space. Spacetime alternatives in nonrelativistic
quantum mechanics have been considered in the past by Feynman,! Yamada and
Takagi,” and Hartle.®> (And also in this volume by Yamada.) The present work
examines spacetime alternatives for the quantum mechanics of a free relativistic
particle in Minkowski space, which should be a closer analogy to gravity because it
exhibits a single reparametrization invariance, which can be thought of as a subset
of the diffeomorphism invariance exhibited by general relativity.

We use Hartle’s generalized quantum mechanics formalism* in which the possi-
ble histories of the system (“fine-grained histories”) are partitioned into classes {c,}
(“coarse graining” ). For each coarse graining, a complex matrix D(«, o) (“decoher-
ence functional”) is constructed according to certain conditions. If its off-diagonal
elements vanish to some accuracy [D(a, @') = 04 p(a)] [“(medium) decoherence”],
quantum-mechanical interference is negligible and the diagonal elements are the
probabilities of the alternatives to the same accuracy. We construct the decoher-
ence functional by a sum over histories; the fine-grained histories over which we
sum are arbitrary paths through spacetime, not just those which are single-valued
in the “time” coordinate z°. This construction is Lorentz invariant.

Here we present the decoherence functional for one simple coarse-graining which
decoheres for certain initial and final conditions. For more details and a wider
consideration of the subject, the reader is directed to the author’s recent paper.®

2. Formulation®

For each class ¢, of paths, a restricted propagator K, is constructed via a sum
over those histories which start at a spacetime point 2’ on an initial spacelike 3-



surface ¢/, end at a point z” on a final surface o” and are in the class c,:
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The sum of all the {K,} in a coarse graining gives the Feynman propagator:
Yo Kuo(2", 2') = Ap(z” — 2'). The initial condition is described by a Klein-Gordon
wave function ¥ (z'); to each alternative ¢, there corresponds a branch wave func-
tion 1, (2") = iK (2", x') o (x') where o is the Klein-Gordon inner product on o’
Summing all the {v,} gives the positive frequency component of ¢: >, ¥, (z") =
iAp(z"—x")oh(x') = ¢+ (2"). The final condition is a mixed state described by a set
of Klein-Gordon wave functions {¢;(z")} and non-negative weights {p/}, attached
with the Klein-Gordon inner product on ¢” to produce the decoherence functional:
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We would like to choose for p” a condition of future indifference, i.e., a com-
pletely unspecified final condition. This condition is usually implemented by re-
placing the final density matrix with the identity operator. However, for the (non-
positive-definite) Klein-Gordon inner product, the identity operator is given by

(2)
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which is unacceptable as a final density matrix, since some of the weights {p} it
implies are negative. Instead, we must take the final condition to be
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so that . 0 p" 0thy = YL 0pt —1p- 0h, = o 01hy — 29, 01p-,, which differs from
Yo 0 1P, whenever 9, and 1, have negative frequency components.

3. Coarse Graining and Results

Let n be a constant spacelike unit vector (n-n = 1), and x,, = n-z be the compo-
nent of x along n. We can use the timelike 3-surface z,, = 0 to define a set of three al-
ternatives: cg, in which the entire path lies in the region x,, < 0; ¢,, in which the path
is confined to the region x,, > 0; and c¢;, in which the path crosses z,, = 0. If we define
the reflection of x through the plane x,, = 0 by z. = x—2x,,n, it is possible to show by
the method of images® that K,(z",z') = O(—=2") [Ap(2"—2") — Ap(2"—2")] O(=2")
and K,.(z",2") = ©(2!) [Ap(z"—2") — Ap(2"—2!)] ©(z!]); the third restricted prop-
agator can be found by superposition: K, = Ap — K, — K,. If we choose the
initial state ¥ (z’) to be antisymmetric about z, = 0, (i.e., ¥(z.) = —¥(z)), the
branch wave functions take the particularly simple forms 1,(z") = O(—z)y* (z"),



P (2") = O(z!)yt(2"), and ,(2") = 0. If the initial state is normalized so that
1t o™ = 1, the decoherence functional is then

D(4,6)=5+AD D({,r)=—-AD  D({,b)
D(r,l) = —=AD  D(r,r) =3+ AD D(r,b)
D(b,£) =0 D(b,7) =0 D(b,b)

where AD = —2¢, o), = =24, o), = 21, o), = 21, o), is given by*
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Note that whenever the alternatives do decohere (AD = 0), the probabilities are
given by p({) ~ 1/2 ~ p(r), p(b) = 0. _

One special initial condition is for ¥t to be peaked with a small width 6k around
a single wavenumber k (and its reflection k.). Then AD becomes
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and we have approximate decoherence to lowest order in 6k.
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“We use here several pieces of notation, namely v, = v — v,n and w, = \/k? + m2, and also that 1;+
is the Fourier transform of the positive energy part of ¢). We are also working in a reference frame where n
has no time component and with a final surface ¢” which is a surface of constant time ¢''.



